5.已知函數(shù)f(x)在點P(1,m)處的切線方程為y=2x-1,函數(shù)f(x)的導數(shù)為f′(x),則f(1),與f′(1)的大小關系是(  )
A.f(1)=f′(1)B.f(1)>f′(1)C.f(1)<f′(1)D.無法判斷

分析 利用函數(shù)在切點處的導數(shù)值是切線的斜率求出f′(1),將切點坐標代入切線方程求出f(1),從而比較出大小即可.

解答 解:∵y=f(x)在點P(1,m)處的切線方程是y=2x-1,
∴f′(1)=2,
f(1)=2-1=1,
f(1)<f′(1),
故選:C.

點評 本題考查導數(shù)的幾何意義:函數(shù)在切點處的導數(shù)值是切線的斜率,屬于一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.記等比數(shù)列{an}的前n項積為Tn(n∈N*),已知am-1am+1-2am=0,且T2m-1=128,則m的值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=ex-ax-1(a>0).
(1)求函數(shù)f(x)的最小值g(a),并證明g(a)≤0;
(2)求證:?n∈N*,都有1n+1+2n+1+3n+1+…+nn+1<$\frac{2}{3}{(n+1)^{n+1}}$成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=ex-ax,a∈R.
(Ⅰ)若函數(shù)f(x)在x=0處的切線過點(1,0),求a的值;
(Ⅱ)若函數(shù)f(x)在(-1,+∞)上不存在零點,求a的取值范圍;
(Ⅲ)若a=1,求證:對$x∈R,f(x)≥\frac{1+x}{f(x)+x}$恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,已知圓$C:{(x+\sqrt{3})^2}+{y^2}=8,A(\sqrt{3},0)$,Q是圓上一動點,AQ的垂直平分線交直線CQ于點M,設點M的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過點A作傾斜角為$\frac{π}{4}$的直線l交軌跡E于B,D兩點,求|BD|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1-x}{ax}$+lnx在(1,+∞)上是增函數(shù),且a>0.
(1)求a的取值范圍;
(2)求函數(shù)g(x)=ln(1+x)-x在[0,+∞)上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,已知四邊形ABCD滿足AD∥BC,AB=AD=CD=$\frac{1}{2}$BC=2,E是BC的中點,將△BAE沿AE折成△B1AE,使面B1AE⊥面AECD,F(xiàn)為棱B1D上一點.
(1)若F為B1D的中點,求證:B1D⊥面AEF;
(2)若B1E⊥AF,求二面角C-AF-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知圓C:x2+y2-2x-24=0,直線ax-y+5=0(a>0)與圓交于A,B兩點.
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)若弦AB的垂直平分線l過點P(-2,4),求三角形ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2sinx(sinx-cosx).
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)若$A∈(0,\frac{π}{4})$,且$f(\frac{A}{2})=1-\frac{{4\sqrt{2}}}{5}$,求cosA.

查看答案和解析>>

同步練習冊答案