直角坐標系xOy平面上,在平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有

[  ]
A.

25個

B.

36個

C.

100個

D.

225個

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知以O為圓心的圓與直線l:y=mx+(3-4m),(m∈R)恒有公共點,且要求使圓O的面積最。
(1)寫出圓O的方程;
(2)圓O與x軸相交于A、B兩點,圓內動點P使|
PA
|
、|
PO
|
|
PB
|
成等比數(shù)列,求
PA
PB
的范圍;
(3)已知定點Q(-4,3),直線l與圓O交于M、N兩點,試判斷
QM
QN
×tan∠MQN
是否有最大值,若存在求出最大值,并求出此時直線l的方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,橢圓的參數(shù)方程為
x=
3
cosθ
y=sinθ
為參數(shù)).以o為極點,x軸正半軸為極軸建立極坐標系,直線的極坐標方程為2ρcos(θ+
π
3
)=3
6
.求橢圓上點到直線距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,曲線C1的參數(shù)方程為
x=cosφ
y=sinφ
(φ為參數(shù)),曲線C2的參數(shù)方程為
x=acosφ
y=bsinφ
(a>b>0,φ為參數(shù))在以O為極點,x軸的正半軸為極軸的極坐標系中,射線l:θ=α與C1,C2各有一個交點.當α=0時,這兩個交點間的距離為2,當α=
π
2
時,這兩個交點重合.
(I)分別說明C1,C2是什么曲線,并求出a與b的值;
(II)設當α=
π
4
時,l與C1,C2的交點分別為A1,B1,當α=-
π
4
時,l與C1,C2的交點為A2,B2,求四邊形A1A2B2B1的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy平面內,平行直線x=m(m=1,2,3,4),與平行直線y=n(n=1,2,3,4)組成的所有矩形中任取一個矩形,恰好是正方形的概率是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

在直角坐標系xOy平面內,平行直線x=m(m=1,2,3,4),與平行直線y=n(n=1,2,3,4)組成的所有矩形中任取一個矩形,恰好是正方形的概率是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

同步練習冊答案