【題目】已知正方體ABCD﹣A1B1C1D1的棱長為1,以頂點A為球心, 為半徑作一個球,則球面與正方體的表面相交所得到的曲線的長等于

【答案】
【解析】解:如圖,球面與正方體的六個面都相交,所得的交線分為兩類:一類在頂點A所在的三個面上,即面AA1B1B、面ABCD和面AA1D1D上;另一類在不過頂點A的三個面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上.在面AA1B1B上,交線為弧EF且在過球心A的大圓上,因為 ,AA1=1,則 .同理 ,所以 ,故弧EF的長為 ,而這樣的弧共有三條.在面BB1C1C上,交線為弧FG且在距球心為1的平面與球面相交所得的小圓上,此時,小圓的圓心為B,半徑為 ,所以弧FG的長為 .這樣的弧也有三條.
于是,所得的曲線長為
所以答案是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圓C過點M(5,2),N(3,2)且圓心在x軸上,點A為圓C上的點,O為坐標(biāo)原點.
(1)求圓C的方程;
(2)連接OA,延長OA到P,使得|OA|=|AP|,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|x2﹣2ax+a=0,x∈R},B={x|x2﹣4x+a+5=0,x∈R},若A和B中有且僅有一個是,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合D= ,有下面四個命題:
p1(x,y)∈D, ≥3 p2(x,y)∈D, <1
p3(x,y)∈D, <4 p4(x,y)∈D, ≥2
其中的真命題是(
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,DC⊥平面BCEF,且四邊形ABCD為矩形,四邊形BCEF為直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.

(1)求證:AF∥平面CDE;
(2)求平面AEF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在多面體ABCDE中,BC=BA,DE∥BC,AE⊥平面BCDE,BC=2DE,F(xiàn)為AB的中點.

(1)求證:EF∥平面ACD;
(2)若EA=EB=CD,求二面角B﹣AD﹣E的正切值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線y2=2px(p>0)的焦點為F,準線為l,A,B是拋物線上的兩個動點,且滿足∠AFB= .設(shè)線段AB的中點M在l上的投影為N,則 的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某日,甲乙二人隨機選擇早上6:00﹣7:00的某一時刻到達黔靈山公園早鍛煉,則甲比乙提前到達超過20分鐘的概率為(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù):①f(x)=3|x| , ②f(x)=x3 , ③f(x)=ln ,④f(x)=x ,⑤f(x)=﹣x2+1中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減函數(shù)為 . (寫出符合要求的所有函數(shù)的序號).

查看答案和解析>>

同步練習(xí)冊答案