設(shè)x軸、y軸正方向上的單位向量分別是、,坐標(biāo)平面上點(diǎn)An、Bn(n∈N*)分別滿足下列兩個條件:①(n∈N*,n≥2);②

(Ⅰ)求的坐標(biāo);

(Ⅱ)設(shè),求an的通項(xiàng)公式;

(Ⅲ)對于(Ⅱ)中的an,是否存在最大的自然數(shù)M,對所有n∈N*都有an≥M成立?若存在,求M值;若不存在,說明理由.

答案:
解析:

  解:(Ⅰ),

  

  ; 4分

  (Ⅱ); 8分

  (Ⅲ), 10分

  當(dāng)且僅當(dāng)時取得最小值6. 12分

  所以存在最大的自然數(shù),對所有都有成階段立 13分.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x軸、y軸正方向上的單位向量分別為
i
j
,坐標(biāo)平面上的點(diǎn)An、Bn(n∈N*)分別滿足下列兩個條件:①
OA1
=2
j
AnAn+1
=
i
+
j
;②
OB1
=2
i
BnBn+1
=(
3
4
)n×2
i
;求
OAn
OBn
的坐標(biāo);若四邊形AnBnBn+1An+1的面積是an,求an(n∈N*)的表達(dá)式;對于(2)中的an,是否存在最小的自然數(shù)N,當(dāng)n>N時恒有an+1<an成立?若存在,求出N的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x軸、y軸正方向上的單位向量分別是
i
、
j
,坐標(biāo)平面上點(diǎn)An、Bn(n∈N*)分別滿足下列兩個條件:
OA1
=16
j
An-1A
n
=
i
(n∈N*,n≥2);
OB1
=
i
+
1
2
j
Bn-1Bn
=-
1
n(n+1)
j
(n∈N*,n≥2)

(1)求
OAn
OBn
的坐標(biāo);
(2)設(shè)an=
OAn
OBn
,求an的通項(xiàng)公式;
(3)對于(Ⅱ)中的an,是否存在最大的自然數(shù)M,對所有n∈N*都有an≥M成立?若存在,求M值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x軸、y軸正方向上的單位向量分別是
i
j
,坐標(biāo)平面上點(diǎn)An、Bn(n∈N*)分別滿足下列兩個條件:
OA1
=
j
AnA
n+1
=
i
+
j
;②
OB1
=3
i
BnBn+1
=(
2
3
)×3
i

(1)求
OAn
OBn
的坐標(biāo);
(2)若四邊形AnBnBn+1An+1的面積是an,求an(n∈N*)的表達(dá)式;
(3)對于(2)中的an,是否存在最小的自然數(shù)M,對一切(n∈N*)都有an<M成立?若存在,求M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x軸、y軸正方向上的單位向量分別是
i
、
j
,坐標(biāo)平面上點(diǎn)An、Bn(n∈N*)分別滿足下列兩個條件:
OA1
=4
j
An-1A
n
=
i
(n∈N*,n≥2);
OB1
=
i
+
1
2
j
Bn-1Bn
=-
1
n(n+1)
j
(n∈N*,n≥2)
.(其中O為坐標(biāo)原點(diǎn))
(I)求向量
OAn
及向量
OBn
的坐標(biāo);
(II)設(shè)an=
OAn
OBn
,求an的通項(xiàng)公式并求an的最小值;
(III)對于(Ⅱ)中的an,設(shè)數(shù)列bn=
sin
2
cos
(n-1)π
2
(n+1)an-6n+3
,Sn為bn的前n項(xiàng)和,證明:對所有n∈N*都有Sn
89
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•長寧區(qū)二模)設(shè)x軸、y軸正方向上的單位向量分別是
i
、
j
,坐標(biāo)平面上點(diǎn)列An、Bn(n∈N*)分別滿足下列兩個條件:①
OA1
=
j
AnAn+1
=
i
+
j
;②
OB1
=3
i
BnBn+1
=(
2
3
)
n
×3
i

(1)求
OA2
OA3
的坐標(biāo),并證明點(diǎn)An在直線y=x+1上;
(2)若四邊形AnBnBn+1An+1的面積是an,求an(n∈N*)的表達(dá)式;
(3)對于(2)中的an,是否存在最小的自然數(shù)M,對一切n∈N*都有an<M成立?若存在,求M;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案