2.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( 。
A.$y=\frac{1}{x}$B.y=|x|C.y=-x2+4D.y=3-x

分析 根據(jù)函數(shù)的單調(diào)性的性質(zhì)進(jìn)行判斷即可.

解答 解:對(duì)于A:$y=\frac{1}{x}$,是反比例函數(shù),k>0,圖象在第一三象限,y隨x的增大而減小,是減函數(shù),故A不對(duì).
對(duì)于B:y=|x|,是關(guān)于y軸對(duì)稱,x下部分翻折的直線.(0,+∞)上都是增函數(shù),在區(qū)間(0,1)上是增函數(shù),故B對(duì).
對(duì)于C:y=-x2+4,開口向下,(0,+∞)上都是減函數(shù),那么在區(qū)間(0,1)上也減函數(shù),故C不對(duì).
對(duì)于D:y=3-x,k<0,圖象過第一二四象限,y隨x的增大而減小,是減函數(shù),故D不對(duì).
故選B

點(diǎn)評(píng) 本題考查了基本初等函數(shù)的性質(zhì).屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將正三棱柱截去三個(gè)角(如圖甲所示,A,B,C分別是三邊的中點(diǎn))得到幾何圖形乙.則該幾何體的正視圖為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若α是銳角,且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,則sinα的值等于( 。
A.$\frac{\sqrt{6}+3}{6}$B.-$\frac{\sqrt{6}-3}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{6}-1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.等比數(shù)列{an}的前m項(xiàng)和為30,前2m項(xiàng)和為90,那么它的前3m項(xiàng)和為(  )
A.130B.180C.210D.260

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$f(x)=\left\{\begin{array}{l}sinx\\ 5\frac{|x|}{x}\end{array}\right.\begin{array}{l},x>0\\ \\,x<0\end{array}$,則f(-1)=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一空間幾何體的三視圖如圖所示,則該幾何體的表面積是(  )
A.24π+4$\sqrt{5}$πB.20π+4$\sqrt{5}$πC.24π+8$\sqrt{5}$πD.20π+8$\sqrt{5}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且S6>S7>S5,給出下列五個(gè)命題:
①d<0;②Sn>0;③S12<0;④數(shù)列{Sn}中的最大項(xiàng)為S11;⑤|a6|>|a7|.
其中正確命題的序號(hào)是:①⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.?dāng)?shù)列{an}中,an+2=an+1-an,a1=2,a2=5,則a2013為( 。
A.3B.-2C.5D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(1+x)e-2x,g(x)=ax+$\frac{x^3}{2}$+1+2xcosx,當(dāng)x∈[0,1]時(shí),
(1)求函數(shù)F(x)=f(x)+x-1的最值;
(2)若f(x)≥g(x),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案