已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時(shí)都取得極值
(1) 求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間
(2) 若對xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍。
解:(1)f(x)=x3+ax2+bx+c,f¢(x)=3x2+2ax+b
由f¢()=,f¢(1)=3+2a+b=0得
a=,b=-2
f¢(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:
| (-¥,-) | - | (-,1) | 1 | (1,+¥) |
f¢(x) | + | 0 | - | 0 | + |
f(x) | | 極大值 | ¯ | 極小值 | |
所以函數(shù)f(x)的遞增區(qū)間是(-¥,-)與(1,+¥)
遞減區(qū)間是(-,1)
(2)f(x)=x3-x2-2x+c,xÎ〔-1,2〕,當(dāng)x=-時(shí),f(x)=+c
為極大值,而f(2)=2+c,則f(2)=2+c為最大值。
要使f(x)<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2)=2+c
解得c<-1或c>2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
選修4—5:不等式選講
已知函數(shù)f(x)=|x-4|-|x-2|.
(1)作出函數(shù)y=f(x)的圖象;
(2)解不等式|x-4|-|x-2|>1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知函數(shù)f(x)=x|2-x|-m有3個(gè)零點(diǎn)分別為x1,x2,x3,則x1+x2+x3的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省深圳市高三下學(xué)期第二次調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x-xlnx , ,其中表示函數(shù)f(x)在
x=a處的導(dǎo)數(shù),a為正常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)對任意的正實(shí)數(shù),且,證明:
(3)對任意的
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山西省高一第二學(xué)期第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x+,且f(1)=2.
(1)求m;
(2)判斷f(x)的奇偶性;
(3)函數(shù)f(x)在(1,+∞)上是增函數(shù)還是減函數(shù)?并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆北京市高一上學(xué)期期中考試數(shù)學(xué)AP班 題型:選擇題
已知函數(shù)f(x)=x+1,xR,則下列各式成立的是
A. f(x)+f(-x)=2 B. f(x)f(-x)=2
C. f(x)=f(-x) D. –f(x)=f(-x)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com