A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 建立空間直角坐標(biāo)系,利用cos$<\overrightarrow{AS},\overrightarrow{BE}>$=$\frac{\overrightarrow{AS}•\overrightarrow{BE}}{|\overrightarrow{AS}||\overrightarrow{BE}|}$,即可得出.
解答 解:如圖所示建立空間直角坐標(biāo)系,
不妨OA=1,則A(1,0,0),S(0,0,1),B(0,1,0),C(0,-1,0),
E$(-\frac{1}{2},0,\frac{1}{2})$.
$\overrightarrow{AS}$=(-1,0,1),$\overrightarrow{BE}$=$(-\frac{1}{2},-1,\frac{1}{2})$.
∴cos$<\overrightarrow{AS},\overrightarrow{BE}>$=$\frac{\overrightarrow{AS}•\overrightarrow{BE}}{|\overrightarrow{AS}||\overrightarrow{BE}|}$=$\frac{\frac{1}{2}+0+\frac{1}{2}}{\sqrt{2}×\sqrt{\frac{1}{4}+1+\frac{1}{4}}}$=$\frac{\sqrt{3}}{3}$.
∴BE與SA所成角的余弦值為$\frac{\sqrt{3}}{3}$.
故選;C.
點(diǎn)評(píng) 本題考查了利用向量夾角公式求異面直線所成的角,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 75%,$\frac{525}{4}$ | B. | 25%,$\frac{525}{4}$ | C. | 75%,175 | D. | 25%,175 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [4,6] | B. | [6,+∞) | C. | (-∞,4] | D. | (4,6) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0] | B. | (0,1) | C. | [0,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com