已知函數(shù)的定義域為區(qū)間.
(1)求函數(shù)的極大值與極小值;
(2)求函數(shù)的最大值與最小值.
(1)函數(shù)的極大值為,極小值為.
(2)當上取最大值.當, 在上取最小值.

試題分析:(1)遵循“求導數(shù)、求駐點、確定區(qū)間導數(shù)值的正負、求極值”.
(2)遵循“求導數(shù)、求駐點、確定區(qū)間導數(shù)值的正負、求極值、比較區(qū)間端點函數(shù)值、求最值”.
本題利用“表解法”,形象直觀,易于理解.
試題解析:
(1),解得:.
通過計算并列表:









 





 


增加
 極大值   
 減少
極小值
增加

所以,函數(shù)的極大值為,極小值為.
(2)由(1)知,當, 在上取最大值.
,上取最小值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),恒過定點
(1)求實數(shù);
(2)在(1)的條件下,將函數(shù)的圖象向下平移1個單位,再向左平移個單位后得到函數(shù),設函數(shù)的反函數(shù)為,直接寫出的解析式;
(3)對于定義在上的函數(shù),若在其定義域內(nèi),不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
⑴求函數(shù)的單調區(qū)間;
⑵如果對于任意的,總成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)
(1)若是函數(shù)的極值點,是函數(shù)的兩個不同零點,且,求;
(2)若對任意,都存在為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若1是函數(shù)的一個零點,求函數(shù)的解析表達式;
(2)試討論函數(shù)的零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義:如果函數(shù)在區(qū)間上存在,滿足則稱函數(shù)在區(qū)間上的一個雙中值函數(shù),已知函數(shù)是區(qū)間上的雙中值函數(shù),則實數(shù)的取值范圍是  (  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

記定義在R上的函數(shù)的導函數(shù)為.如果存在,使得成立,則稱為函數(shù)在區(qū)間上的“中值點”.那么函數(shù) 在區(qū)間[-2,2]上的“中值點”為____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線在點的切線方程是____________              

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設函數(shù),對任意,恒有,其中M是常數(shù),則M的最小值是              .

查看答案和解析>>

同步練習冊答案