【題目】如圖,貨輪在海上B處,以50海里/時(shí)的速度沿方位角(從正北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為155o的方向航行,為了確定船位,在B點(diǎn)處觀測(cè)到燈塔A的方位角為125o.半小時(shí)后,貨輪到達(dá)C點(diǎn)處,觀測(cè)到燈塔A的方位角為80o.求此時(shí)貨輪與燈塔之間的距離(答案保留最簡(jiǎn)根號(hào)).

【答案】海里

【解析】

應(yīng)該解△ABC,根據(jù)條件可求出∠BCA180o155o80o105o,∠BAC180o30o105o45o, BC,所以應(yīng)用正弦定理解之即可

△ABC中,∠ABC155o125o30o

∠BCA180o155o80o105o,

∠BAC180o30o105o45o

BC,

由正弦定理,得

∴AC=(海里)

答:船與燈塔間的距離為海里.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】牡丹江一中2019年將實(shí)行新課程改革,即除語(yǔ)、數(shù)、外三科為必考科目外,還要在理、化、生、史、地、政六科中選擇三科作為選考科目.已知某生的高考志愿為北京大學(xué)環(huán)境科學(xué)專業(yè),按照17年北大高考招生選考科目要求物、化必選,為該生安排課表(上午四節(jié)、下午四節(jié),上午第四節(jié)和下午第一節(jié)不算相鄰),現(xiàn)該生某天最后兩節(jié)為自習(xí)課,且數(shù)學(xué)不排下午第一節(jié),語(yǔ)文、外語(yǔ)不相鄰,則該生該天課表有(  )種.

A. 444B. 1776C. 1440D. 1560

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)一種產(chǎn)品,第一年投入資金1000萬(wàn)元,出售產(chǎn)品收入40萬(wàn)元,預(yù)計(jì)以后每年的投入資金是上一年的一半,出售產(chǎn)品所得收入比上一年多80萬(wàn)元,同時(shí),當(dāng)預(yù)計(jì)投入的資金低于20萬(wàn)元時(shí),就按20萬(wàn)元投入,且當(dāng)年出售產(chǎn)品收入與上一年相等.

(1)求第年的預(yù)計(jì)投入資金與出售產(chǎn)品的收入;

(2)預(yù)計(jì)從哪一年起該公司開(kāi)始盈利?(注:盈利是指總收入大于總投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱柱ABCD-A1B1C1D1中,CDAB, ABBC,AB=BC=2CD=2,側(cè)棱AA1⊥平面ABCD.且點(diǎn)MAB1的中點(diǎn)

(1)證明:CM∥平面ADD1A1;

(2)求點(diǎn)M到平面ADD1A1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以為極點(diǎn), 軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)求曲線的極坐標(biāo)方程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

【答案】(1)曲線的極坐標(biāo)方程為: ;(2)6.

【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線的普通方程,再根據(jù)化為極坐標(biāo)方程;(2)將直線l的極坐標(biāo)方程代入曲線的極坐標(biāo)方程得,再根據(jù)的值.

試題解析:解:1)將方程消去參數(shù)

∴曲線的普通方程為,

代入上式可得

∴曲線的極坐標(biāo)方程為: -

2)設(shè)兩點(diǎn)的極坐標(biāo)方程分別為,

消去,

根據(jù)題意可得是方程的兩根,

,

型】解答
結(jié)束】
23

【題目】選修4—5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求關(guān)于x的不等式的解集;

(2)若關(guān)于x的不等式有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′,PDA=60°.

(1)DPCC′所成角的大小.

(2)DP與平面AA′D′D所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)lnx,若函數(shù)f(x)[1e]上的最小值是,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是菱形,且,其對(duì)角線交于點(diǎn), 是棱、上的中點(diǎn).

(1)求證:面;

(2)若面底面 , , ,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列{}的前n項(xiàng)和Sn=2-2

1)求數(shù)列{}的通項(xiàng)公式;

2)若bn=logSn=b1+b2++bn,對(duì)任意正整數(shù)nSn+n+m0恒成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案