。
(Ⅰ)求的極值點;
(Ⅱ)當時,若方程在上有兩個實數(shù)解,求實數(shù)t的取值范圍;
(Ⅲ)證明:當時,。
(Ⅰ)①時,, ∴在(-1,+∞)上是增函數(shù),函數(shù)既無極大值點,也無極小值點;②當時,在上遞增,在單調(diào)遞減,函數(shù)的極大值點為-1,無極小值點;③當時,在上遞減,在單調(diào)遞增,函數(shù)的極小值點為-1,無極大值點;(Ⅱ)當時,方程有兩解;(Ⅲ)詳見解析.
【解析】
試題分析:(Ⅰ)求的極值點,先求函數(shù)的定義域為,然后可對函數(shù)求導(dǎo)數(shù)得,令導(dǎo)數(shù)等零,求出的解,再利用導(dǎo)數(shù)大于0,導(dǎo)數(shù)小于0,判斷函數(shù)的單調(diào)區(qū)間,從而確定極值點,但本題由于含有參數(shù),需對討論(Ⅱ)當時,若方程在上有兩個實數(shù)解,求實數(shù)t的取值范圍,由(Ⅰ)知,在上單調(diào)遞增,在上單調(diào)遞減,而,由此可得實數(shù)t的取值范圍;(Ⅲ)根據(jù)要證明當時,,直接證明比較困難,可以利用分析法來證明本題,從結(jié)論入手,要證結(jié)論只要證明后面這個式子成立,兩邊取對數(shù),構(gòu)造函數(shù),問題轉(zhuǎn)化為只要證明函數(shù)在一個范圍上成立,利用導(dǎo)數(shù)證明函數(shù)的性質(zhì).
試題解析:(Ⅰ)(1分)
①時,, ∴在(-1,+∞)上是增函數(shù),函數(shù)既無極大值點,也無極小值點。(2分)
②當時,在上遞增,在單調(diào)遞減,函數(shù)的極大值點為-1,無極小值點(3分)
③當時,在上遞減,在單調(diào)遞增,函數(shù)的極小值點為-1,無極大值點(4分)
(Ⅱ)由(Ⅰ)知,在上單調(diào)遞增,在上單調(diào)遞減,
又,
∴,∴當時,方程有兩解 (8分)
(Ⅲ)要證:只須證
只須證:,
設(shè)
則,(10分)
由(1)知在單調(diào)遞減,(12分)
∴,即是減函數(shù),而m>n,
∴,故原不等式成立。 (14分)
考點:不等式的證明;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
科目:高中數(shù)學(xué) 來源:2012屆廣東省潮汕兩市名校高三上學(xué)期期中考試文科數(shù)學(xué) 題型:解答題
.(本題滿分14分)
設(shè),其中
(Ⅰ)當時,求的極值點;
(Ⅱ)若為R上的單調(diào)函數(shù),求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆河北省石家莊市高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè),其中為正實數(shù).
(1)當時,求的極值點;
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省泉州四校高三第二次聯(lián)考考試理科數(shù)學(xué) 題型:解答題
.(本小題滿分13分)設(shè),其中為正實數(shù).
(1)當時,求的極值點;
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省晉江市四校高三第二次聯(lián)合考試理科數(shù)學(xué)試卷 題型:解答題
設(shè),其中為正實數(shù).
(1)當時,求的極值點;
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市高三下學(xué)期入學(xué)測試數(shù)學(xué)試卷 題型:解答題
(本小題滿分16分)設(shè),其中為正實數(shù).
(1)當時,求的極值點;
(2)若為上的單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com