(5分)(2011•廣東)設(shè)函數(shù)f(x)=x3cosx+1,若f(a)=11,則f(﹣a)= .
﹣9
解析試題分析:由于函數(shù)f(x)=x3cosx+1,是一個非奇非偶函數(shù),故無法直接應(yīng)用函數(shù)奇偶性的性質(zhì)進(jìn)行解答,故可構(gòu)造函數(shù)g(x)=f(x)﹣1=x3cosx,然后利用g(x)為奇函數(shù),進(jìn)行解答.
解:令g(x)=f(x)﹣1=x3cosx
則g(x)為奇函數(shù),
又∵f(a)=11,
∴g(a)=f(a)﹣1=11﹣1=10
∴g(﹣a)=﹣10=f(﹣a)﹣1
∴f(﹣a)=﹣9
故答案為:﹣9
點(diǎn)評:本題考查的知識點(diǎn)是函數(shù)奇偶性的性質(zhì),其中構(gòu)造出奇函數(shù)g(x)=f(x)﹣1=x3cosx,是解答本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(-1)+g(1)=2,f(1)+g(-1)=4,則g(1)等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
[2014·黑龍江重點(diǎn)中學(xué)質(zhì)檢]用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x,x+2,10-x}(x≥0),則f(x)的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
[2014·金版原創(chuàng)]設(shè)f(x)是定義在R上的以3為周期的奇函數(shù),若f(2)>1,f(2014)=,則實(shí)數(shù)a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
(2011•浙江)若函數(shù)f(x)=x2﹣|x+a|為偶函數(shù),則實(shí)數(shù)a= _________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知函數(shù),若關(guān)于的函數(shù)有兩個零點(diǎn), 則實(shí)數(shù)的取值范圍是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com