【題目】甲、乙兩名同學(xué)在5次英語(yǔ)口語(yǔ)測(cè)試中的成績(jī)統(tǒng)計(jì)如圖的莖葉圖所示.
(注:樣本數(shù)據(jù)x1 , x2 , …,xn的方差s2= [ + +…+ ],其中 表示樣本均值)
(1)現(xiàn)要從中選派一人參加英語(yǔ)口語(yǔ)競(jìng)賽,從兩同學(xué)的平均成績(jī)和方差分析,派誰(shuí)參加更合適;
(2)若將頻率視為概率,對(duì)學(xué)生甲在今后的三次英語(yǔ)口語(yǔ)競(jìng)賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中高于80分的次數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ.
【答案】
(1)
解: = =86…(1分), = =86…
= =37.6
= =42.4
因?yàn)? , < ,所以派甲去更合適
(2)
解:甲高于80分的頻率為 ,從而每次成績(jī)高于80分的概率P=
ξ取值為0,1,2,3,ξ~(3, )
直接計(jì)算得P(ξ=0)= = ;P(ξ=1)= = ;
P(ξ=2)= = ;P(ξ=3)= = ,
ξ的分布列為
ξ | 0 | 1 | 2 | 3 |
P |
所以,Eξ=0× +1× +2× +3× =
【解析】(1)根據(jù)莖葉圖的數(shù)據(jù),利用平均數(shù)及方差公式,即可求得結(jié)論;(2)求得ξ取值及ξ~(3, ),求出相應(yīng)概率,可得ξ的分布列,從而可求數(shù)學(xué)期望Eξ.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解莖葉圖(莖葉圖又稱(chēng)“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少),還要掌握平均數(shù)、中位數(shù)、眾數(shù)(⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為、, 為橢圓的右頂點(diǎn), , 分別為橢圓的上、下頂點(diǎn).線(xiàn)段的延長(zhǎng)線(xiàn)與線(xiàn)段交于點(diǎn),與橢圓交于點(diǎn).(1)若橢圓的離心率為, 的面積為12,求橢圓的方程;(2)設(shè) ,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線(xiàn)的方程為.
(1)求曲線(xiàn)的普通方程及直線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)是曲線(xiàn)上的任意一點(diǎn),求點(diǎn)到直線(xiàn)的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù) 的定義域;
(2)若存在a∈R,對(duì)任意 ,總存在唯一x0∈[﹣1,2],使得f(x1)=g(x0)成立.求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|﹣2≤x≤5},B={x|m﹣4≤x≤3m+3}.
(1)若AB,求實(shí)數(shù)m的取值范圍;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)先閱讀:
在等式cos2x=2cos2x﹣1(x∈R)的兩邊求導(dǎo),得:(cos2x)′=(2cos2x﹣1)′,由求導(dǎo)法則,得(﹣sin2x)2=4cosx(﹣sinx),化簡(jiǎn)得等式:sin2x=2cosxsinx.
(1)利用上題的想法(或其他方法),結(jié)合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整數(shù)n≥2),證明: .
(2)對(duì)于正整數(shù)n≥3,求證:
(i) ;
(ii) ;
(iii) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0且a≠1,函數(shù)f(x)=loga(x+1), ,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
(3)若關(guān)于x的方程F(x)﹣2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用min{a,b,c}表示a,b,c三個(gè)數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( )
A.7
B.6
C.5
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com