【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),曲線(xiàn),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

(1)求曲線(xiàn)的普通方程和曲線(xiàn)的極坐標(biāo)方程;

(2)若射線(xiàn)與曲線(xiàn),分別交于兩點(diǎn),求.

【答案】(1),;(2)

【解析】試題分析:1)由sin2α+cos2α=1,能求出曲線(xiàn)C1的普通方程,由x=ρcosθ,y=ρsinθ,能求出曲線(xiàn)C2的極坐標(biāo)方程;(2)依題意設(shè)A(),B(),將代入曲線(xiàn)C1的極坐標(biāo)方程,求出ρ1=3,將(ρ0)代入曲線(xiàn)C2的極坐標(biāo)方程求出,由此能求出|AB|

解析:

(Ⅰ)由.

所以曲線(xiàn)的普通方程為.

,代入,得到,化簡(jiǎn)得到曲線(xiàn)的極坐標(biāo)方程為.

(Ⅱ)依題意可設(shè),曲線(xiàn)的極坐標(biāo)方程為.

代入的極坐標(biāo)方程得,解得.

代入的極坐標(biāo)方程得.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)拋擲骰子的過(guò)關(guān)游戲規(guī)定:在第關(guān)要拋擲一顆骰子次,如里這次拋擲所出現(xiàn)的點(diǎn)數(shù)和大于,則算過(guò)關(guān),可以隨意挑戰(zhàn)某一關(guān).若直接挑戰(zhàn)第三關(guān),則通關(guān)的概率為______;若直接挑戰(zhàn)第四關(guān),則通關(guān)的慨率為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓經(jīng)過(guò)點(diǎn),且點(diǎn)到橢圓的兩焦點(diǎn)的距離之和為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若是橢圓上的兩個(gè)點(diǎn),線(xiàn)段的中垂線(xiàn)的斜率為且直線(xiàn)交于點(diǎn),為坐標(biāo)原點(diǎn),求證:三點(diǎn)共線(xiàn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,其焦距為,若,則稱(chēng)橢圓為“黃金橢圓”.黃金橢圓有如下性質(zhì):“黃金橢圓”的左、右焦點(diǎn)分別是,以,,為頂點(diǎn)的菱形的內(nèi)切圓過(guò)焦點(diǎn),.

(1)類(lèi)比“黃金橢圓”的定義,試寫(xiě)出“黃金雙曲線(xiàn)”的定義;

(2)類(lèi)比“黃金橢圓”的性質(zhì),試寫(xiě)出“黃金雙曲線(xiàn)”的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某公司為鄭州園博園生產(chǎn)某特許商品,該公司年固定成本為10萬(wàn)元,每生產(chǎn)千件需另投入2 .7萬(wàn)元,設(shè)該公司年內(nèi)共生產(chǎn)該特許商品工x千件并全部銷(xiāo)售完;每千件的銷(xiāo)售收入為R(x)萬(wàn)元,

,

(I)寫(xiě)出年利潤(rùn)W(萬(wàn)元〉關(guān)于該特許商品x(千件)的函數(shù)解析式;

〔II〕年產(chǎn)量為多少千件時(shí),該公司在該特許商品的生產(chǎn)中所獲年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次測(cè)試中,卷面滿(mǎn)分為,考生得分為整數(shù),規(guī)定分及以上為及格.某調(diào)研課題小組為了調(diào)查午休對(duì)考生復(fù)習(xí)效果的影響,對(duì)午休和不午休的考生進(jìn)行了測(cè)試成績(jī)的統(tǒng)計(jì),數(shù)據(jù)如下表:

分?jǐn)?shù)段

午休考生人數(shù)

29

34

37

29

23

18

10

不午休考生人數(shù)

20

52

68

30

15

12

3

(1)根據(jù)上述表格完成下列列聯(lián)表:

及格人數(shù)

不及格人數(shù)

合計(jì)

午休

不午休

合計(jì)

(2)判斷“能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為成績(jī)及格與午休有關(guān)”?

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

(參考公式:其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓 的左焦點(diǎn)為F,直線(xiàn)x=m與橢圓相交于點(diǎn)A、B,當(dāng)△FAB的周長(zhǎng)最大時(shí),△FAB的面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)上有最大值1,設(shè)

(1)求的值;

(2)若不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)若函數(shù)有三個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案