(本小題滿分14分)
已知函數(shù),為實(shí)數(shù))有極值,且在處的切線與直線平行.
(1)求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)a,使得函數(shù)的極小值為1,若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由;
(本小題滿分14分)
(1)………………
(2)的極小值為1           
(本小題滿分14分)
本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、函數(shù)的最大值、解不等式等基礎(chǔ)知識(shí),同時(shí)考查綜合運(yùn)用所學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.
解:(1)
 由題意
 …………………………………………2分    
                            ①……………………3分   
    ②……………………4分
由①、②可得,……………5分
故實(shí)數(shù)a的取值范圍是………………………6分            
(2)存在……………………                                 …………………………………………7分    
由(1)可知,
 …………………………………8分







+
0

0
+

單調(diào)增
極大值
單調(diào)減
極小值
單調(diào)增
      ,
                         ……………………    9分
                ……………………10分
…………13分      
的極小值為1           ……………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)求函數(shù)的最大值;
(2)當(dāng)時(shí),求證;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分)已知函數(shù).(a>0)
(1)討論函數(shù)的單調(diào)性;
(2)若曲線上兩點(diǎn)A、B處的切線都與y軸垂直,且線段AB與x軸有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若的極值點(diǎn),求實(shí)數(shù)的值
(2)若是函數(shù)的一個(gè)零點(diǎn), 且, 其中, 則求的值
(3)若當(dāng)時(shí),求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù)m為常數(shù),且m>0)有極大值9.
(Ⅰ)求m的值;
(Ⅱ)若斜率為的直線是曲線的切線,求此直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
已知函數(shù)處都取得極值.
(1)求a,b的值;
(2)求的單調(diào)區(qū)間及極大值、極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)已知函數(shù).
(1)    設(shè),求函數(shù)的極值;
(2)若,且當(dāng)時(shí),12a恒成立,試確定的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題


若對(duì)任意的恒成立,則的取值范圍(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案