【題目】已知函數(shù),其中為正實(shí)數(shù).
討論函數(shù)的單調(diào)性;
若存在,使得不等式成立,求的取值范圍.
【答案】當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;當(dāng)時(shí),在區(qū)間上單調(diào)遞增;當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;.
【解析】
由題意可知的定義域?yàn)?/span>,, 令,得,,分類討論,,時(shí)導(dǎo)函數(shù)的正負(fù)來(lái)判斷函數(shù)的單調(diào)性;
若存在,使得不等式成立,則時(shí),.由可知,當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,;當(dāng),即時(shí),由知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,,當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞減,,不成立,進(jìn)而得出結(jié)論.
解:的定義域?yàn)?/span>.
.
令,得,.
當(dāng)時(shí),即時(shí),
令,得,或;
令,得,
故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
當(dāng)時(shí),即時(shí),恒成立,故在區(qū)間上單調(diào)遞增
當(dāng)時(shí),即時(shí),令,得,或;
令,得,故在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
綜上所述:當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),在區(qū)間上單調(diào)遞增;
當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
若存在,
使得不等式成立,
則時(shí),.
由可知,當(dāng),即時(shí),函數(shù)在區(qū)間上單調(diào)遞增,
,解得,
;
當(dāng),即時(shí),
由知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,
.
令,
,
則,
函數(shù)在區(qū)間上單調(diào)遞增.
恒成立,.
當(dāng),即時(shí),
函數(shù)在區(qū)間上單調(diào)遞減,
,不成立.
綜上所述,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在以、、、、、為頂點(diǎn)的五面體中,四邊形為正方形,, ,.
(1)證明;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過(guò)橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)點(diǎn)在圓上,且在第一象限,過(guò)作的切線交橢圓于兩點(diǎn),問(wèn): 的周長(zhǎng)是否為定值?若是,求出定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司有兩種發(fā)放薪水的方案:
方案一:底薪1800元,設(shè)每月送快遞單,提成(單位:元)為
方案二:底薪2000元,設(shè)每月送快遞單,提成(單位:元)為
以下該公司某職工小甲在2019年9月份(30天)送快遞的數(shù)據(jù),
日送快遞單數(shù) | 11 | 13 | 14 | 15 | 16 | 18 |
天數(shù) | 4 | 5 | 12 | 3 | 5 | 1 |
(1)從小甲日送快遞單數(shù)大于15的六天中抽取兩天,求這兩天他送的快遞單數(shù)恰好都為16單的概率.
(2)請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為小甲9月份選擇合適的發(fā)放薪水的方案,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】盒內(nèi)有大小相同的9個(gè)球,其中2個(gè)紅色球,3個(gè)白色球,4個(gè)黑色球.規(guī)定取出1個(gè)紅色球得1分,取出1個(gè)白色球得0分,取出1個(gè)黑色球得分,現(xiàn)從盒內(nèi)任取3個(gè)球.
(Ⅰ)求取出的3個(gè)球中至少有一個(gè)紅球的概率;
(Ⅱ)求取出的3個(gè)球得分之和恰為1分的概率;
(Ⅲ)設(shè)為取出的3個(gè)球中白色球的個(gè)數(shù),求的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè),求證:;
(Ⅲ)若對(duì)于恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市垃圾處理廠的垃圾年處理量(單位:千萬(wàn)噸)與資金投入量x(單位:千萬(wàn)元)有如下統(tǒng)計(jì)數(shù)據(jù):
2012年 | 2013年 | 2014年 | 2015年 | 2016年 | |
資金投入量x(千萬(wàn)元) | 1.5 | 1.4 | 1.9 | 1.6 | 2.1 |
垃圾處理量y(千萬(wàn)噸) | 7.4 | 7.0 | 9.2 | 7.9 | 10.0 |
(1)若從統(tǒng)計(jì)的5年中任取2年,求這2年的垃圾處理量至少有一年不低于8.0(千萬(wàn)噸)的概率;
(2)由表中數(shù)據(jù)求得線性回歸方程為,該垃圾處理廠計(jì)劃2017年的垃圾處理量不低于9.0千萬(wàn)噸,現(xiàn)由垃圾處理廠決策部門獲悉2017年的資金投入量約為1.8千萬(wàn)元,請(qǐng)你預(yù)測(cè)2017年能否完成垃圾處理任務(wù),若不能,缺口約為多少千萬(wàn)噸?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且滿足,,設(shè),則以下四個(gè)命題:(1)是等差數(shù)列;(2)中最大項(xiàng)是;(3)通項(xiàng)公式是;(4).其中真命題的序號(hào)是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com