3.已知命題p:“函數(shù)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函數(shù)”,命題q:“曲線$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$表示橢圓”,若“¬p∨¬q”是假命題,求m的取值范圍.

分析 分別求出關(guān)于p,q成立的m的范圍,根據(jù)“¬p∨¬q”是假命題,得到“p∧q”是真命題,求出m的范圍即可.

解答 解:若關(guān)于命題p:“函數(shù)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函數(shù)”,為真命題;
對(duì)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2求導(dǎo),得:f′(x)=x2-2(4m-1)x+(15m2-2m-7),
已知函數(shù)f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函數(shù),
故f′(x)≥0,
即求使x2-2(4m-1)x+(15m2-2m-7)≥0的m的取值范圍,
可以看出函數(shù)開口向上,使△≤0即可,
對(duì)[-2(4m-1)]2-4(15m2-2m-7)≤0求解,得:2≤m≤4.
若關(guān)于命題q:“曲線$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$表示橢圓”,為真命題;
則$\left\{\begin{array}{l}{\stackrel{5-m>0}{1+m>0}}\\{5-m≠1+m}\end{array}\right.$,解得:-1<m<5,且m≠2,
由題意知,命題“¬p∨¬q”為假,其否定為“p∧q”,是真命題.
所以由$\left\{\begin{array}{l}{2≤m≤4}\\{-1<m<5,m≠2}\end{array}\right.$,解得:m∈(2,4].
可得:實(shí)數(shù)m的取值范圍是:(2,4].

點(diǎn)評(píng) 本題考查了復(fù)合命題的判斷,考查橢圓和二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.全國(guó)人大常委會(huì)會(huì)議于2015年12月27日通過了關(guān)于修改人口與計(jì)劃生育法的決定,“全面二孩”從2016年元旦起開始實(shí)施,A市婦聯(lián)為了解該市市民對(duì)“全面二孩”政策的態(tài)度,隨機(jī)抽取了男性市民30人,女市民70人進(jìn)行調(diào)查,得到以下的2×2列聯(lián)表:
支持反對(duì)合計(jì)
男性161430
女性442670
合計(jì)6040100
(1)根據(jù)以上數(shù)據(jù),能否有90%的把握認(rèn)為A市市民“支持全面二孩”與“性別”有關(guān);
(2)現(xiàn)從持“支持”態(tài)度的市民中再按分層抽樣的方法選出15名發(fā)放禮品,分別求所抽取的15人中男性市民和女性市民的人數(shù);
(3)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從A市所有市民中,采用隨機(jī)抽樣的方法抽取3位市民進(jìn)行長(zhǎng)期跟蹤調(diào)查,記被抽取的3位市民中持“支持”態(tài)度人數(shù)為X
(i)求X的分布列;
(ii)求X的數(shù)學(xué)期望E(X)和方差D(X).
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在數(shù)列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,則a2016=( 。
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,某城市有一個(gè)邊長(zhǎng)為4百米的正方形休閑廣場(chǎng),廣場(chǎng)中間陰影部分是一個(gè)雕塑群.建立坐標(biāo)系(單位:百米),則雕塑群的左上方邊緣曲線AB是拋物線y2=4x(1≤x≤3,y≥0)的一段.為方便市民,擬建造一條穿越廣場(chǎng)的直路EF(寬度不計(jì)),要求直路EF與曲線AB相切(記切點(diǎn)為M),并且將廣場(chǎng)分割成兩部分,其中直路EF左上部分建設(shè)為主題陳列區(qū).記M點(diǎn)到OC的距離為m(百米),主題陳列區(qū)的面積為S(萬平方米).
(1)當(dāng)M為EF中點(diǎn)時(shí),求S的值;
(2)求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)于任意n∈N*,總有Sn=2(an-1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在ak與ak+1之間插入k個(gè)數(shù),使這k+2個(gè)數(shù)組成等差數(shù)列,當(dāng)公差d滿足3<d<4時(shí),求k的值并求這個(gè)等差數(shù)列所有項(xiàng)的和T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.經(jīng)過兩條直線2x-y-3=0和4x-3y-5=0的交點(diǎn),并且與直線2x+3y+5=0垂直的直線方程為3x-2y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若x,y滿足約束條件$\left\{\begin{array}{l}3x+y-6≥0\\ x-y-2≤0\\ y-3≤0\end{array}\right.$,則z=y-2x的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知一組數(shù)據(jù)x1,x2,x3,x4,x5的平均數(shù)是2,方差是$\frac{1}{3}$,那么另一組數(shù)據(jù)3x1-2,3x2-2,3x3-2,
3x4-2,3x5-2的平均數(shù)和方差分別是4,3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如表:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(小時(shí))2.5344.5
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程$\hat y=\hat bx+\hat a$,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間?
(可能用到的公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x,其中$\hat a$、$\hat b$是對(duì)回歸直線方程$\hat y=a+bx$中系數(shù)a、b按最小二乘法求得的估計(jì)值)

查看答案和解析>>

同步練習(xí)冊(cè)答案