分析 問題等價(jià)于|1+$\frac{a(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$|<$\frac{1}{{{|x}_{1}x}_{2}|}$,(1),由x1,x2→$\frac{1}{3}$時(shí)(1)變?yōu)閨1+3a|<9,由x1,x2→1時(shí)(1)變?yōu)閨1+a|<1,得到關(guān)于a的不等式,解出即可.
解答 解:已知a>0,f(x)=x+alnx,
對(duì)區(qū)間[1,3]內(nèi)的任意兩個(gè)相異的實(shí)數(shù)x1,x2,恒有|f(x1)-f(x2)|<|$\frac{1}{{x}_{1}}$-$\frac{1}{{x}_{2}}$|,
∴|x1-x2+a(lnx1-lnx2)|<|$\frac{{{x}_{1}-x}_{2}}{{{x}_{1}x}_{2}}$|,
兩邊都除以|x1-x2|,
∵|1+$\frac{a(l{nx}_{1}-l{nx}_{2})}{{{x}_{1}-x}_{2}}$|<$\frac{1}{{{|x}_{1}x}_{2}|}$,(1)
(lnx)′=$\frac{1}{x}$∈[$\frac{1}{3}$,1],
∴$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$∈[$\frac{1}{3}$,1],
x1,x2→$\frac{1}{3}$時(shí)(1)變?yōu)閨1+3a|<9,
解得:-$\frac{10}{3}$<a<$\frac{8}{3}$,
x1,x2→1時(shí)(1)變?yōu)閨1+a|<1,
解得:-2<a<0,
又∵a>0,
∴0<a<$\frac{8}{3}$,
故答案為(0,$\frac{8}{3}$).
點(diǎn)評(píng) 本題考查了求函數(shù)閉區(qū)間上的最值問題,考查了導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{3\sqrt{3}}}{4}$ | D. | $\frac{{3\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1024 | B. | 2048 | C. | 3072 | D. | 1536 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com