(本題滿分14分)
已知橢圓的左右焦點(diǎn)為,拋物線C:以F2為焦點(diǎn)且與橢圓相交于點(diǎn)M,直線F1M與拋物線C相切。
(Ⅰ)求拋物線C的方程和點(diǎn)M的坐標(biāo);
(Ⅱ)過F2作拋物線C的兩條互相垂直的弦AB、DE,設(shè)弦AB、DE的中點(diǎn)分別為F、N,求證直線FN恒過定點(diǎn);
解:(Ⅰ)由橢圓方程得半焦距        …………1分
所以橢圓焦點(diǎn)為                    …………2分
又拋物線C的焦點(diǎn)為  ……3分
設(shè),直線的方程為……4分
代入拋物線C得
與拋物線C相切,
      …………7分
(Ⅱ)設(shè)的方程為 代入,得,…8分
設(shè),則 ………9分
,    ………10分
所以,將換成      …………12分
由兩點(diǎn)式得的方程為               …………13分
當(dāng),所以直線恒過定點(diǎn)         …………14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三角形的一個頂點(diǎn)位于原點(diǎn),另外兩個頂點(diǎn)在拋物線上,則這個正三角形的邊長為(  )
A.B.C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖所示,已知直線的斜率為且過點(diǎn),拋物線, 直線與拋物線有兩個不同的交點(diǎn),是拋物線的焦點(diǎn),點(diǎn)為拋物線內(nèi)一定點(diǎn),點(diǎn)為拋物線上一動點(diǎn).
(1)求的最小值;
(2)求的取值范圍;
(3)若為坐標(biāo)原點(diǎn),問是否存在點(diǎn),使過點(diǎn)的動直線與拋物線交于兩點(diǎn),且以為直徑的圓恰過坐標(biāo)原點(diǎn), 若存在,求出動點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
軸上動點(diǎn)引拋物線的兩條切線,為切點(diǎn),設(shè)切線的斜率分別為.
(1)求證:;
(2)試問:直線是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn)坐標(biāo);若不是,請說明理由. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

、已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸為x軸,拋物線上的點(diǎn)M(-3,m)到焦點(diǎn)的距離為5,則 m=                         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓x2+y2-6x-7=0與拋物線y2="2px" (p>0)的準(zhǔn)線相切,則p=__   __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的準(zhǔn)線方程是_____________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知動圓圓心在拋物線上,且動圓恒與直線相切,則此動圓必過定點(diǎn)        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)拋物線的準(zhǔn)線與x軸交地F1,焦點(diǎn)為F2,以F1、F2為焦點(diǎn),離心率的橢圓C2與拋物線C2在x軸上方的交點(diǎn)為P。

(1)當(dāng)m=1時,求橢圓C2的方程;
(2)延長PF2交拋物線于點(diǎn)Q,M是拋物線C1上一動點(diǎn),且M在P與Q之間運(yùn)動,當(dāng)△PF1F2的邊長恰好是三個連續(xù)的自然數(shù)時,求△MPQ面積的最大值。

查看答案和解析>>

同步練習(xí)冊答案