5.設(shè)等差數(shù)列{an}的公差d不為0,若對于任意i∈N*,行列式$|\begin{array}{l}{{a}_{i}}&{{a}_{i+1}}\\{{a}_{i+2}}&{{a}_{i+3}}\end{array}|$的值恒等于公差d,則d=$-\frac{1}{2}$.

分析 利用行列式的性質(zhì)、等差數(shù)列的通項公式即可得出.

解答 解:∵行列式$|\begin{array}{l}{{a}_{i}}&{{a}_{i+1}}\\{{a}_{i+2}}&{{a}_{i+3}}\end{array}|$的值恒等于公差d,
∴d=aiai+3-ai+1ai+2=ai(ai+3d)-(ai+d)(ai+2d)=-2d2,d≠0,
解得d=-$\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.

點評 本題考查了行列式的性質(zhì)、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\frac{lnx}{1+x}-lnx$在x=x0處取得最大值,給出下列5個式子:
①f(x0)<x0,②f(x0)=x0,③f(x0)>x0,④$f({x_0})<\frac{1}{2}$,⑤$f({x_0})>\frac{1}{2}$.則其中正確式子的序號為( 。
A.①和④B.②和④C.②和⑤D.③和⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=|2x-1|-|x+1|.
(1)求不等式f(x)≤0的解集;
(2)若f(x)>a-2|x+1|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.復數(shù)z滿足 z-1=(z+1)i,則z的值是( 。
A.1+iB.1-iC.iD.-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若復數(shù)z滿足i•z=2i-z(i是虛數(shù)單位),則z=1+i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若干個平面把一個長方體分成k個四面體,這些四面體的體積之和等于長方體的體積,則k的最小值為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.下列命題中,
①若lgx>lgy,則$\sqrt{x}$>$\sqrt{y}$;
②若|a|+|b|=|a+b|,則ab≥0;
③對△ABC,若$\overrightarrow{AB}$•$\overrightarrow{BC}$=$\overrightarrow{BC}$•$\overrightarrow{CA}$,則△ABC是等邊三角形;
④若a=1,則函數(shù)f(x)=(x-a)2在(1,+∞)上為增函數(shù).
其中否命題與逆否命題均為真命題的序號是②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列命題中正確命題的個數(shù)是( 。
(1)對分類變量X與Y的隨機變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握越大;
(2)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變;
(3)若a>0,b>0且$\frac{2}{a}$+$\frac{1}$=1,則a+b≥4;
(4)設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.直線y=m與函數(shù)y=x2-3|x-2|-5x+1的圖象有3個交點,則m的值為-5或-6.

查看答案和解析>>

同步練習冊答案