(1)∵a
2+b
2+
ab=c
2,即a
2+b
2﹣c
2=﹣
ab,
∴由余弦定理得:cosC=
=
=﹣
,
又C為三角形的內角,
則C=
;
(2)由題意
=
=
,
∴(cosA﹣tanαsinA)(cosB﹣tanαsinB)=
,
即tan
2αsinAsinB﹣tanα(sinAcosB+cosAsinB)+cosAcosB=tan
2αsinAsinB﹣tanαsin(A+B)+cosAcosB=
,
∵C=
,A+B=
,cosAcosB=
,
∴sin(A+B)=
,cos(A+B)=cosAcosB﹣sinAsinB=
﹣sinAsinB=
,即sinAsinB=
,
∴
tan
2α﹣
tanα+
=
,即tan
2α﹣5tanα+4=0,
解得:tanα=1或tanα=4.