【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在極坐標(biāo)系中,點(diǎn) 的極坐標(biāo)是,曲線 的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 軸的正半軸建立平面直角坐標(biāo)系,斜率為 的直線 經(jīng)過(guò)點(diǎn).

(1)寫(xiě)出直線 的參數(shù)方程和曲線 的直角坐標(biāo)方程;

(2)若直線 和曲線相交于兩點(diǎn),求的值.

【答案】(1)為參數(shù)), ;(2).

【解析】試題分析:

(1)由題意整理可得直線 的參數(shù)方程為參數(shù)),曲線 的直角坐標(biāo)方程;

(2)聯(lián)立直線與圓的方程,直線參數(shù)方程 的幾何意義可得的值為.

試題解析:

解:(1) 由曲線 的極坐標(biāo)方程可得,即,因此曲線 的直角坐標(biāo)方程為,即,點(diǎn)的直角坐標(biāo)為,直線 的傾斜角為,所以直線 的參數(shù)方程為為參數(shù)).

(2)將為參數(shù))代入,得,設(shè)對(duì)應(yīng)參數(shù)分別為,有,根據(jù)直線參數(shù)方程 的幾何意義有, .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中
①函數(shù)f(x)=( x的遞減區(qū)間是(﹣∞,+∞);
②若函數(shù)f(x)= ,則函數(shù)定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)f(x)=2x2﹣4x.
(1)指出圖象的開(kāi)口方向、對(duì)稱軸方程、頂點(diǎn)坐標(biāo);
(2)用描點(diǎn)法畫(huà)出它的圖象;
(3)求出函數(shù)的最值,并分析函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓 和點(diǎn),動(dòng)圓經(jīng)過(guò)點(diǎn)且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn)是曲線軸正半軸的交點(diǎn),點(diǎn), 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)f(x)=(﹣2m2+m+2)xm+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)﹣2(a﹣1)x+1在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a≠0,函數(shù)f(x)= ,若f(1﹣a)=f(1+a),則a的值為(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),且,函數(shù)的圖象與直線相切.

(1)求的解析式;

(2)若當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在區(qū)間,使得在區(qū)間上的值域恰好為?若存在,請(qǐng)求出區(qū)間,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某省高考改革新方案,不分文理科,高考成績(jī)實(shí)行“”的構(gòu)成模式,第一個(gè)“3”是語(yǔ)文、數(shù)學(xué)、外語(yǔ),每門滿分150分,第二個(gè)“3”由考生在思想政治、歷史、地理、物理、化學(xué)、生物6個(gè)科目中自主選擇其中3個(gè)科目參加等級(jí)性考試,每門滿分100分,高考錄取成績(jī)卷面總分滿分750分.為了調(diào)查學(xué)生對(duì)物理、化學(xué)、生物的選考情況,將“某市某一屆學(xué)生在物理、化學(xué)、生物三個(gè)科目中至少選考一科的學(xué)生”記作學(xué)生群體,從學(xué)生群體中隨機(jī)抽取了50名學(xué)生進(jìn)行調(diào)查,他們選考物理,化學(xué),生物的科目數(shù)及人數(shù)統(tǒng)計(jì)如下表:

(I)從所調(diào)查的50名學(xué)生中任選2名,求他們選考物理、化學(xué)、生物科目數(shù)量不相等的概率;

(II)從所調(diào)查的50名學(xué)生中任選2名,記表示這2名學(xué)生選考物理、化學(xué)、生物的科目數(shù)量之差的絕對(duì)值,求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(III)將頻率視為概率,現(xiàn)從學(xué)生群體中隨機(jī)抽取4名學(xué)生,記其中恰好選考物理、化學(xué)、生物中的兩科目的學(xué)生數(shù)記作,求事件“”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)證明:當(dāng)時(shí),

查看答案和解析>>

同步練習(xí)冊(cè)答案