△ABC的三個內(nèi)角A、B、C所對邊的長分別為a、b、c,已知c=3,C=
π3
,a=2b,則b的值為
 
分析:由c,cosC的值及a=2b,利用余弦定理即可列出關于b的方程,求出方程的解即可得到b的值.
解答:解:由c=3,cosC=
1
2
,a=2b,
根據(jù)余弦定理c2=a2+b2-2abcosC得:
5b2-2b2=9,即b2=3,
所以b=
3

故答案為:
3
點評:此題考查學生靈活運用余弦定理及特殊角的三角函數(shù)值化簡求值,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若a=1,b=
3
,A+C=2B
,則sinC=( 。
A、0B、2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的三個內(nèi)角A、B、C的對邊分別是a,b,c,給出下列命題:
①若sinBcosC>-cosBsinC,則△ABC一定是鈍角三角形;
②若sin2A+sin2B=sin2C,則△ABC一定是直角三角形;
③若bcosA=acosB,則△ABC為等腰三角形;
④在△ABC中,若A>B,則sinA>sinB;
其中正確命題的序號是
②③④
②③④
.(注:把你認為正確的命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,且a,b,c成等比數(shù)列
(1)若sinC=2sinA,求cosB的值;
(2)求角B的最大值.并判斷此時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,
m
=(-
3
,sinA),
n
=(cosA,1)
,且
m
n

(Ⅰ)求角A的大小;
(Ⅱ)若a=2,△ABC的面積為
3
,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若a=1,b=
3
,B=60°,則sinC=
1
1

查看答案和解析>>

同步練習冊答案