7.下列所示的四幅圖中,是函數(shù)圖象的是( 。
A.B.C.D.

分析 利用函數(shù)的定義,即可判斷.

解答 解:在函數(shù)定義中,取集合A中的任何一個(gè)元素x,都能在集合B中找個(gè)唯一一個(gè)元素y與之對(duì)應(yīng),選項(xiàng)D具有這樣的特點(diǎn),而其他選項(xiàng)沒(méi)有.
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的定義,函數(shù)的對(duì)應(yīng)關(guān)系的特點(diǎn)是:一對(duì)一或多對(duì)一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某市的出租車收費(fèi)辦法如下:
不超過(guò)2公里收7元(即起步價(jià)7元),超過(guò)2公里的里程每公里加收2.5元,另外每車次超過(guò)2公里收燃油附加費(fèi)1元(不考慮其他因素).相應(yīng)收費(fèi)系統(tǒng)的程序框圖如圖所示,則①處應(yīng)填( 。
A.y=7+2.5xB.y=8+2.5xC.y=2+2.5xD.y=3+2.5x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知集合A={x|x<-1或x≥1},B={x|2a<x≤a+1,a<1},A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如果直線 x+2ay-1=0與直線(3a-1)x-ay-1=0平行,則系數(shù)a的值為( 。
A.0或6B.0或$\frac{1}{6}$C.6或 $\frac{1}{6}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知向量 $\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,m).若 ($\overrightarrow{a}$+2$\overrightarrow$)∥(3$\overrightarrow$-$\overrightarrow{a}$),則實(shí)數(shù) m 的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)F(x)=lnx(x>1)的圖象與函數(shù)G(x)的圖象關(guān)于直線y=x對(duì)稱,若函數(shù)f(x)=(k-1)x-G(-x)無(wú)零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.(1-e,1)B.(1-e,∞)C.(1-e,1]D.(-∞,1-e)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.《萊因德紙草書(shū)》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一,書(shū)中有這樣一道題:把120個(gè)面包分成5份,使每份的面包數(shù)成等差數(shù)列,且較多的三份之和恰好是較少的兩份之和的7倍,則最多的那份有面包( 。
A.43個(gè)B.45個(gè)C.46個(gè)D.48個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^2}+{a_n}-1$,且a1,a4是等比數(shù)列{bn}的前兩項(xiàng),記bn與bn+1之間包含的數(shù)列{an}的項(xiàng)數(shù)為cn,如b1與b2之間包含{an}中的項(xiàng)為a2,a3,則c1=2.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{ancn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(1,-2)若$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=$\overrightarrow$2+m2,則實(shí)數(shù)m等于( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{5}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案