【題目】已知數(shù)列的通項(xiàng)公式為,其中,、.
(1)試寫出一組、的值,使得數(shù)列中的各項(xiàng)均為正數(shù).
(2)若,,數(shù)列滿足,且對(duì)任意的(),均有,寫出所有滿足條件的的值.
(3)若,數(shù)列滿足,其前項(xiàng)和為,且使(、,)的和有且僅有組,、、…、中有至少個(gè)連續(xù)項(xiàng)的值相等,其它項(xiàng)的值均不相等,求、的最小值.
【答案】(1) 、(答案不唯一).(2) 7,8,9,10,11.(3) 的最小值為.的最小值為
【解析】
(1)只要均小于1即可;
(2)利用對(duì)勾函數(shù)的單調(diào)性分類討論,注意的取值只能是正整數(shù).
(3),且,求出
因?yàn)?/span>,只有四組,利用二次函數(shù)的性質(zhì)得,進(jìn)一步得,的四個(gè)值為,,,,因此,的最小值為.再由中有至少個(gè)連續(xù)項(xiàng)的值相等,其它項(xiàng)的值均不相等,則中接著至少有兩個(gè)0,從而可得的最小值.
(1)、(答案不唯一).
(2)由題設(shè),.
當(dāng),單調(diào)遞增,不合題意,
時(shí),,在時(shí)單調(diào)遞增,不合題意,因此,.
當(dāng)時(shí),對(duì)于,當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.
由題設(shè),有,.
于是由及,可解得.
因此,的值為7,8,9,10,11.
(3)因?yàn)?/span>,且,
所以
因?yàn)?/span>(、,),所以、.
于是由,可得,進(jìn)一步得,
此時(shí),的四個(gè)值為,,,,因此,的最小值為.
又、、…、中有至少個(gè)連續(xù)項(xiàng)的值相等,其它項(xiàng)的值均不相等,不妨設(shè),于是有,因?yàn)楫?dāng)時(shí),,所以,
因此,,即的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在以O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=4cosθ,直線C2的參數(shù)方程為(t為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程和直線C2的普通方程;
(2)若P(1,0),直線C2與曲線C1相交于A,B兩點(diǎn),求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某專賣店銷售一新款服裝,日銷售量(單位為件)f(n) 與時(shí)間n(1≤n≤30、nN*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n) 圖象中的點(diǎn)位于斜率為 5 和-3 的兩條直線上,兩直線交點(diǎn)的橫坐標(biāo)為m,且第m天日銷售量最大.
(Ⅰ)求f(n) 的表達(dá)式,及前m天的銷售總數(shù);
(Ⅱ)按以往經(jīng)驗(yàn),當(dāng)該專賣店銷售某款服裝的總數(shù)超過 400 件時(shí),市面上會(huì)流行該款服裝,而日銷售量連續(xù)下降并低于 30 件時(shí),該款服裝將不再流行.試預(yù)測(cè)本款服裝在市面上流行的天數(shù)是否會(huì)超過 10 天?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=丨x+a+1丨+丨x-丨,(a>0)。
(1)證明:f(x)≥5;
(2)若f(1)<6成立,求實(shí)數(shù)a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左右焦點(diǎn)分別是,是橢圓外的動(dòng)點(diǎn),滿足.點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,.
(1)當(dāng)時(shí),用點(diǎn)P的橫坐標(biāo)表示;
(2)求點(diǎn)的軌跡的方程;
(3)在點(diǎn)的軌跡上,是否存在點(diǎn),使的面積?若存在,求出的正切值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線是雙曲線的一條漸近線,點(diǎn)都在雙曲線上,直線與軸相交于點(diǎn),設(shè)坐標(biāo)原點(diǎn)為.
(1)求雙曲線的方程,并求出點(diǎn)的坐標(biāo)(用表示);
(2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線與軸相交于點(diǎn).問:在軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
(3)若過點(diǎn)的直線與雙曲線交于兩點(diǎn),且,試求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合是滿足下列性質(zhì)的函數(shù)的全體:存在實(shí)數(shù)、,對(duì)于定義域內(nèi)任意,均有成立,稱數(shù)對(duì)為函數(shù)的“伴隨數(shù)對(duì)”.
(1)判斷函數(shù)是否屬于集合,并說明理由;
(2)若函數(shù),求滿足條件的函數(shù)的所有“伴隨數(shù)對(duì)”;
(3)若、都是函數(shù)的“伴隨數(shù)對(duì)”,當(dāng)時(shí),,當(dāng)時(shí),,求當(dāng)時(shí),函數(shù)的解析式和零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,為實(shí)數(shù),函數(shù),且函數(shù)是偶函數(shù),函數(shù)在區(qū)間上是減函數(shù),且在區(qū)間上是增函數(shù).
(1)求函數(shù)的解析式;
(2)求實(shí)數(shù)的值;
(3)設(shè),問是否存在實(shí)數(shù),使得在區(qū)間上有最小值-2?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購(gòu)商從采購(gòu)的一批水果中隨機(jī)抽取個(gè),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個(gè)數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)
(2)用樣本估計(jì)總體,果園老板提出兩種購(gòu)銷方案給采購(gòu)商參考.
方案:不分類賣出,單價(jià)為元.
方案:分類賣出,分類后的水果售價(jià)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(jià)(元/kg) | 16 | 18 | 22 | 24 |
從采購(gòu)單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再?gòu)某槿〉?/span>個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com