函數(shù).
(Ⅰ)在中,,求的值;
(Ⅱ)求函數(shù)的最小正周期及其圖象的所有對稱軸的方程.
(Ⅰ);(Ⅱ),
解析試題分析:(Ⅰ)由已知條件可求的值;喓瘮(shù)時余弦的二倍角公式有三個,分析可知應用,然后按平方差公式展開可消去分母將其化簡,將代入化簡后的即可求的值;(Ⅱ)用化一公式再將其繼續(xù)化簡為的形式。根據(jù)周期公式求周期,再將視為整體代入正弦函數(shù)對稱軸公式即可得其對稱軸方程。
試題解析:解:(Ⅰ)由得.
因為,
2分
, 4分
因為在中,,
所以, 5分
所以, 7分
所以. 8分
(Ⅱ)由(Ⅰ)可得,
所以的最小正周期. 10分
因為函數(shù)的對稱軸為, 11分
又由,得,
所以的對稱軸的方程為. 13分
考點:用二倍角公式、化一公式等化簡三角函數(shù),正弦函數(shù)的周期及對稱軸,考查整體思想及計算能力。
科目:高中數(shù)學 來源: 題型:解答題
已知x∈R,ω>0,u=,v=(cos2ωx,sin ωx),函數(shù)f(x)=u·v-的最小正周期為π.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間上的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)請用“五點法”畫出函數(shù)在長度為一個周期的閉區(qū)間上的簡圖(先在所給的表格中填上所需的數(shù)值,再畫圖);
(Ⅱ)求函數(shù)的單調遞增區(qū)間;
(Ⅲ)當時,求函數(shù)的最大值和最小值及相應的的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com