橢圓16x
2+y
2=4的焦點(diǎn)坐標(biāo)為
.
考點(diǎn):橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:利用橢圓的標(biāo)準(zhǔn)方程及其a,b,c的關(guān)系即可得出答案.
解答:
解:橢圓16x
2+y
2=4的標(biāo)準(zhǔn)方程為:
+=1,
∴a
2=4,b
2=
,c
2=a
2-b
2=
,
解得c=
.
∴橢圓16x
2+y
2=4的焦點(diǎn)坐標(biāo)為(0,±
),
故答案為:(0,±
)
點(diǎn)評:熟練掌握橢圓的標(biāo)準(zhǔn)方程及其a,b,c的關(guān)系是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
下列有四個命題中,
①若
∥
,
∥,則
∥;
②已知O,A.B.C四點(diǎn)不共線,
=m
+n
(m,n∈R),且A、B、C三點(diǎn)共線,則m+n=1;
③命題“?x∈R有sinx+cosx=
”的否定為“?x∈R,sinx+cos≠
”;
④若α為第二象限角,則
為第一象限的角;
正確的為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知等差數(shù)列{an}的前n項和為Sn,a6=S3=12,則a4=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若p:
>0,則¬p為(化簡結(jié)果用區(qū)間表示)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
.有下列說法:
①函數(shù)f(x)的值域為[-6,0];
②函數(shù)g(x)=f(x)+2•(
)
n有2n+5(n∈N
*)個不相同的零點(diǎn);
③當(dāng)x∈[3
n-1,3
n)(n∈N
*)時,函數(shù)f(x)的圖象與x軸圍成的圖形的面積為6;
④若關(guān)于x的不等式x|f(x)|>m在x∈[1,+∞)上有解,則m的取值范圍是(-∞,12].
其中說法正確的總個數(shù)為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=loga(ax-1)(0<a<1).
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的單調(diào)性,并用單調(diào)性的定義給予證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,橢圓
+
=1(a>b>0)的上頂點(diǎn)為A,左原點(diǎn)為B,F(xiàn)為右焦點(diǎn),離心率e=
,過F作平行于AB的直線交橢圓于C,D兩點(diǎn),作平行四邊形OCED,求證:E在此橢圓上.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)數(shù)列a
n=1-
,d
n=
,記S
n為數(shù)列{d
n}的前n項和,證明S
n<2.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知直線l
1:x+y-7=0與直線l
2:x+y+5=0截圓C所得的弦長均為8,則圓C的面積是
.
查看答案和解析>>