1.函數(shù)y=x3+x的遞增區(qū)間是(  )
A.(-∞,1)B.(-1,1)C.(-∞,+∞)D.(1,+∞)

分析 求出函數(shù)的導(dǎo)數(shù),由二次函數(shù)的性質(zhì),即可得到函數(shù)在定義域R上遞增.

解答 解:函數(shù)y=x3+x的導(dǎo)數(shù)為y′=3x2+1≥1>0,
則函數(shù)在定義域R上遞增.
即有函數(shù)的遞增區(qū)間為(-∞,+∞).
故選:C.

點(diǎn)評(píng) 本題考查了運(yùn)用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)三個(gè)數(shù)$\sqrt{(x-\sqrt{2})^{2}+{y}^{2}}$,$\sqrt{3}$,$\sqrt{(x+\sqrt{2})^{2}+{y}^{2}}$成等差數(shù)列,記(x,y)所對(duì)應(yīng)點(diǎn)的曲線是C.
(1)求曲線C的方程;
(2)已知點(diǎn)M(1,0),點(diǎn)N(3,2),過(guò)點(diǎn)M任作直線l與曲線C相交于A,B兩點(diǎn),設(shè)直線AN,BN的斜率分別為k1,k2,問(wèn)k1+k2是否為定值?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知F1,F(xiàn)2是橢圓$\frac{x^2}{100}+\frac{y^2}{36}=1$的兩個(gè)焦點(diǎn),P是橢圓曲線上位于第一象限的點(diǎn),且PF1⊥PF2,求P點(diǎn)坐標(biāo)及△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)y=|x|(x-4)
(1)畫(huà)出函數(shù)的圖象;
(2)利用圖象回答:當(dāng)f(x)為何值時(shí),方程x,y∈R有一解?有兩解?有三解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<π)的最小正周期是π,將函數(shù)f(x)圖象向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度后所得的函數(shù)過(guò)點(diǎn)$({-\frac{π}{6},1})$,則函數(shù)f(x)=sin(ωx+ϕ)( 。
A.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞減B.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞增
C.在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞減D.在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x),g(x)分別由如表給出:
x123
f(x)131
x123
g(x)321
則f(g(1))的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2}則關(guān)于x的不等式bx2-ax-2>0的解集為(-2,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如果a、b、c∈R,則下列命題中正確的是( 。
A.若a>b,c>b,則a>cB.若a>-b,則c-a>c+b
C.若ac2>bc2,則a>bD.若a>b,c>d,則ac>bd

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知一次函數(shù)y=f(x)中,f(8)=16,f(2)+f(3)=f(5),則f(1)+f(2)+f(3)+…+f(100)=10100.

查看答案和解析>>

同步練習(xí)冊(cè)答案