【題目】如圖是某設(shè)計(jì)師設(shè)計(jì)的型飾品的平面圖,其中支架,兩兩成,,且.現(xiàn)設(shè)計(jì)師在支架上裝點(diǎn)普通珠寶,普通珠寶的價(jià)值為,且長成正比,比例系數(shù)為為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價(jià)值為,且的面積成正比,比例系數(shù)為.設(shè)

1)求關(guān)于的函數(shù)解析式,并寫出的取值范圍;

2)求的最大值及相應(yīng)的的值.

【答案】1);(2,的最大值是.

【解析】

試題(1)運(yùn)用題設(shè)和實(shí)際建立函數(shù)關(guān)系并確定定義域;(2)運(yùn)用基本不等式求函數(shù)的最值和取得最值的條件.

試題解析:(1)因?yàn)?/span>,,,由余弦定理,,解得,

,.又,得,解得

所以的取值范圍是

2,

,

設(shè),

當(dāng)且僅當(dāng)取等號(hào),此時(shí)取等號(hào),

所以當(dāng)時(shí),的最大值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線的焦點(diǎn)為,點(diǎn)是拋物線上一點(diǎn),且

(1)求的值;

(2)若為拋物線上異于的兩點(diǎn),且.記點(diǎn)到直線的距離分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)中,圓與圓相交與兩點(diǎn).

(I)求線段的長.

(II)記圓軸正半軸交于點(diǎn),點(diǎn)在圓C上滑動(dòng),求面積最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 已知a1=1, ,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)證明:對(duì)一切正整數(shù)n,有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生,將他們的模塊測(cè)試成績(jī)分成6組:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.已知高一年級(jí)共有學(xué)生600名,據(jù)此估計(jì),該模塊測(cè)試成績(jī)不少于60分的學(xué)生人數(shù)為(

A.588
B.480
C.450
D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),的部分圖象如圖所示,且,則( )

A. 6 B. 4 C. -4 D. -6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓Γ: =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2 , 焦距為2c,若直線y= 與橢圓Γ的一個(gè)交點(diǎn)M滿足∠MF1F2=2∠MF2F1 , 則該橢圓的離心率等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為

(1)求的值;

(2)若,求函數(shù)的單調(diào)區(qū)間;

(3)設(shè)函數(shù),且在區(qū)間內(nèi)存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案