【題目】已知函數(shù)),

(Ⅰ)求的單調(diào)區(qū)間;

)求證:1是的唯一極小值點;

(Ⅲ)若存在, ,滿足,求的取值范圍.(只需寫出結(jié)論)

【答案】(1) 單調(diào)遞增區(qū)間為 的單調(diào)遞減區(qū)間為 (2)見解析(3)

【解析】試題分析:(Ⅰ)求出, 求得 的范圍,可得函數(shù)增區(qū)間, 求得 的范圍,可得函數(shù)的減區(qū)間;(Ⅱ)先求得),可得,又可證明在定義域內(nèi)遞增,即可證明 是g(x)的唯一極小值點;(Ⅲ)令兩函數(shù)的值域有交集即可.

試題解析::(Ⅰ) 因為

,得

因為所以

當(dāng)變化時, , 的變化情況如下:

極大值

的單調(diào)遞增區(qū)間為, 的單調(diào)遞減區(qū)間為 (Ⅱ)證明:

),

設(shè),則

是單調(diào)遞增函數(shù),

,故方程只有唯一實根

當(dāng)變化時, 的變化情況如下:

1

極小值

時取得極小值,即1是的唯一極小值點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足 ,
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)的單調(diào)區(qū)間;
(3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當(dāng)a≥2且x≥1時,試比較 和ex1+a哪個更靠近lnx,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ< )的圖象與x軸相鄰兩個交點間的距離為 ,且圖象上一個最低點為M( ,﹣2). (Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅲ)當(dāng)x∈[ ]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB,AC3, BC2,P是△ABC內(nèi)的一點.

(1)若P是等腰直角三角形PBC的直角頂點,求PA的長;

(2)若∠BPC,設(shè)∠PCBθ,求△PBC的面積S(θ)的解析式,并求S(θ)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個人有n把鑰匙,其中只有一把可以打開房門,他隨意的進行試開,若試開過的鑰匙放在一邊,試開次數(shù)X為隨機變量,則P(X=k)=( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某著名歌星在某地舉辦一次歌友會,有1000人參加,每人一張門票,每張100元.在演出過程中穿插抽獎活動,第一輪抽獎從這1000張票根中隨機抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動.第二輪抽獎由第一輪獲獎?wù)擢毩⒉僮靼粹o,電腦隨機產(chǎn)生兩個實數(shù)x,y(x,y∈[0,4]),若滿足y≥ ,電腦顯示“中獎”,則抽獎?wù)咴俅潍@得特等獎獎金;否則電腦顯示“謝謝”,則不獲得特等獎獎金.
(1)已知小明在第一輪抽獎中被抽中,求小明在第二輪抽獎中獲獎的概率;
(2)設(shè)特等獎獎金為a元,小李是此次活動的顧客,求小李參加此次活動獲益的期望;若該歌友會組織者在此次活動中獲益的期望值是至少獲得70000元,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱如圖所示,并要求正四棱柱的高是正四棱錐的高的4倍.

1則倉庫的容積是多少?

2若正四棱錐的側(cè)棱長為,則當(dāng)為多少時,倉庫的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點與橢圓 的一個焦點重合,點在拋物線上,過焦點的直線交拋物線于、兩點.

(Ⅰ)求拋物線的方程以及的值;

(Ⅱ)記拋物線的準線軸交于點,試問是否存在常數(shù),使得都成立?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若曲線在點處的切線與直線垂直,求實數(shù)的值;

(Ⅱ)若函數(shù)在其定義域上是增函數(shù),求實數(shù)的取值范圍;

(Ⅲ)當(dāng)時,函數(shù)的兩個極值點為,且,若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案