如圖,在四棱錐中,底面為矩形,平面,,為中點(diǎn).
(1)證明://平面;
(2)證明:平面.
(1)參考解析;(2)參考解析
解析試題分析:(1)直線(xiàn)與平面平行的證明,根據(jù)判斷定理要在平面內(nèi)找一條直線(xiàn)與與該直線(xiàn)平行.所以要證//平面,找到直線(xiàn)即可.
(2)要證直線(xiàn)與平面垂直根據(jù)判斷定理要在平面內(nèi)找到兩條相交的直線(xiàn)與該直線(xiàn)垂直即可.通過(guò)分析直線(xiàn)AE⊥PD由題意可得;另外直線(xiàn)CD垂直平面PAD,所以有可得直線(xiàn)CD垂直直線(xiàn)AE.又由于直線(xiàn)CD與直線(xiàn)PD相交,所以可證得結(jié)論.
試題解析:證明:(1)因?yàn)榈酌?img src="http://thumb.zyjl.cn/pic5/tikupic/42/2/1lpvs4.png" style="vertical-align:middle;" />為矩形,
所以 .又因?yàn)?平面,平面,
所以 //平面.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0a/f/tqo6p1.png" style="vertical-align:middle;" />,為中點(diǎn),
所以,因?yàn)?平面,
所以.又底面為矩形,
所以.
所以平面.
所以.
所以平面.
考點(diǎn):1.線(xiàn)面平行的判斷.2.線(xiàn)面垂直的判斷.3.線(xiàn)面關(guān)系與線(xiàn)線(xiàn)關(guān)系的相互轉(zhuǎn)化.4.空間圖像感.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,對(duì)角線(xiàn)A1C與平面BDC1交于點(diǎn)O,AC、BD交于點(diǎn)M,E為AB的中點(diǎn),F(xiàn)為AA1的中點(diǎn).求證:
(1)C1、O、M三點(diǎn)共線(xiàn);
(2)E、C、D1、F四點(diǎn)共面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在三棱柱ABCA1B1C1中,底面△ABC是等邊三角形,D為AB中點(diǎn).
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是矩形,且CD⊥DA1,求證:三棱柱ABCA1B1C1是正三棱柱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)如圖所示,證明命題“a是平面π內(nèi)的一條直線(xiàn),b是π外的一條直線(xiàn)(b不垂直于π),c是直線(xiàn)b在π上的投影,若a⊥b,則a⊥c”為真.
(2)寫(xiě)出上述命題的逆命題,并判斷其真假(不需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖四棱錐中,底面是平行四邊形,平面是的中點(diǎn),.
(1)試判斷直線(xiàn)與平面的位置關(guān)系,并予以證明;
(2)若四棱錐體積為 ,,求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐中,底面為直角梯形,∥, ,平面,且,為的中點(diǎn)
(1) 證明:面面
(2) 求面與面夾角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com