【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度(單位:)平均在之間即為正常體溫,超過(guò)即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.
某位患者因患肺炎發(fā)熱,于12日至26日住院治療. 醫(yī)生根據(jù)病情變化,從14日開(kāi)始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱. 住院期間,患者每天上午8:00服藥,護(hù)士每天下午16:00為患者測(cè)量腋下體溫記錄如下:
(1)請(qǐng)你計(jì)算住院期間該患者體溫不低于的各天體溫平均值;
(2)在日—日期間,醫(yī)生會(huì)隨機(jī)選取天在測(cè)量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目“項(xiàng)目”的檢查,記為高熱體溫下做“項(xiàng)目”檢查的天數(shù),試求的分布列與數(shù)學(xué)期望;
(3)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開(kāi)始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請(qǐng)依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說(shuō)明理由.
【答案】(1);(2)分布列見(jiàn)解析,;(3)答案不唯一,給出合理理由即可.
【解析】
(1)由題意利用平均數(shù)公式直接求解即可;
(2)由題意利用超幾何分布的概率公式即可分別求出、、,列出分布列后即可求期望;
(3)可從各抗生素降溫總數(shù),使用抗生素時(shí)體溫平均值和方差,體溫穩(wěn)定下降的時(shí)間點(diǎn)和單日溫度下降最大值幾個(gè)角度去考慮,選出效果最佳的抗生素.
(1)由表可知,該患者共6天的體溫不低于,記平均體溫為,
.
所以,患者體溫不低于的各天體溫平均值為.
(2)的所有可能取值為,,.
,,.
則的分布列為:
P |
所以.
(3)“抗生素C”治療效果最佳可使用理由:
①“抗生素B”使用期間先連續(xù)兩天降溫1.0又回升0.1,“抗生素C”使用期間持續(xù)降溫共計(jì)1.2,說(shuō)明“抗生素C”降溫效果最好,故“抗生素C”治療效果最佳.
②抗生素B”治療期間平均體溫39.03,方差約為;“抗生素C”平均體溫38,方差約為,“抗生素C”治療期間體溫離散程度大,說(shuō)明存在某個(gè)時(shí)間節(jié)點(diǎn)降溫效果明顯,故“抗生素C”治療效果最佳.
“抗生素B”治療效果最佳可使用理由:
自使用“抗生素B”開(kāi)始治療后,體溫才開(kāi)始穩(wěn)定下降,且使用“抗生素B”治療當(dāng)天共降溫0.7,是單日降溫效果最好的一天,故“抗生素B”治療效果最佳.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù))
(1)若,求曲線C的直角坐標(biāo)方程以及直線l的極坐標(biāo)方程;
(2)設(shè)點(diǎn),曲線C與直線 交于A、B兩點(diǎn),求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】金秋九月,丹桂飄香,某高校迎來(lái)了一大批優(yōu)秀的學(xué)生.新生接待其實(shí)也是和社會(huì)溝通的一個(gè)平臺(tái).校團(tuán)委、學(xué)生會(huì)從在校學(xué)生中隨機(jī)抽取了160名學(xué)生,對(duì)是否愿意投入到新生接待工作進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女士 | 40 | 40 |
(1)根據(jù)上表說(shuō)明,能否有99%把握認(rèn)為愿意參加新生接待工作與性別有關(guān);
(2)現(xiàn)從參與問(wèn)卷調(diào)查且愿意參加新生接待工作的學(xué)生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機(jī)選取3人到火車站迎接新生,設(shè)選取的3人中女生人數(shù)為,寫(xiě)出的分布列,并求.
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在黨中央的正確指導(dǎo)下,通過(guò)全國(guó)人民的齊心協(xié)力,特別是全體一線醫(yī)護(hù)人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.下圖是國(guó)家衛(wèi)健委給出的全國(guó)疫情通報(bào),甲、乙兩個(gè)省份從2月7日到2月13日一周的新增“新冠肺炎”確診人數(shù)的折線圖如下:
根據(jù)圖中甲、乙兩省的數(shù)字特征進(jìn)行比對(duì),通過(guò)比較把你得到最重要的兩個(gè)結(jié)論寫(xiě)在答案紙指定的空白處.
①_________________________________________________.
②_________________________________________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),有以下三個(gè)結(jié)論:
①函數(shù)恒有兩個(gè)零點(diǎn),且兩個(gè)零點(diǎn)之積為;
②函數(shù)的極值點(diǎn)不可能是;
③函數(shù)必有最小值.
其中正確結(jié)論的個(gè)數(shù)有( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)剩余定理”又稱“孫子定理”.1852年,英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中“物不知數(shù)”問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱之為“中國(guó)剩余定理”.“中國(guó)剩余定理”講的是一個(gè)關(guān)于整除的問(wèn)題,現(xiàn)有這樣一個(gè)整除問(wèn)題:將1到2019這2019個(gè)數(shù)中,能被3除余2且被5整除余2的數(shù)按從小到大的順序排成一列,構(gòu)成數(shù)列,則此數(shù)列所有項(xiàng)中,中間項(xiàng)的值為( 。
A.992B.1022C.1007D.1037
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)寫(xiě)出的極坐標(biāo)方程,并將化為普通方程;
(2)若直線的極坐標(biāo)方程為與相交于兩點(diǎn),
求的面積(為圓的圓心).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: ()的左右焦點(diǎn)分別為, ,若橢圓上一點(diǎn)滿足,且橢圓過(guò)點(diǎn),過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn) .
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作軸的垂線,交橢圓于,求證: , , 三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),人們的支付方式發(fā)生了巨大轉(zhuǎn)變.近年來(lái),移動(dòng)支付已成為主要支付方式之一.為了解某校學(xué)生上個(gè)月A,B兩種移動(dòng)支付方式的使用情況,從全校所有的1000名學(xué)生中隨機(jī)抽取了100人,發(fā)現(xiàn)樣本中A,B兩種支付方式都不使用的有5人,樣本中僅使用A和僅使用B的學(xué)生的支付金額分布情況如下:
支付金額 支付方式 | 不大于2000元 | 大于2000元 |
僅使用A | 27人 | 3人 |
僅使用B | 24人 | 1人 |
(Ⅰ)估計(jì)該校學(xué)生中上個(gè)月A,B兩種支付方式都使用的人數(shù);
(Ⅱ)從樣本僅使用B的學(xué)生中隨機(jī)抽取1人,求該學(xué)生上個(gè)月支付金額大于2000元的概率;
(Ⅲ)已知上個(gè)月樣本學(xué)生的支付方式在本月沒(méi)有變化.現(xiàn)從樣本僅使用B的學(xué)生中隨機(jī)抽查1人,發(fā)現(xiàn)他本月的支付金額大于2000元.結(jié)合(Ⅱ)的結(jié)果,能否認(rèn)為樣本僅使用B的學(xué)生中本月支付金額大于2000元的人數(shù)有變化?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com