證明:(1);(2);

(3)

答案:略
解析:

證明:(1)

(2)

(3)左邊=

=右邊.

∴原式成立.

對(duì)于次數(shù)較高的三角函數(shù)式,主要采用降次的方法進(jìn)行變形,采用因式分解,倍角公式對(duì)三角式“降次”求解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于n∈N*,用數(shù)學(xué)歸納法證明:
1•n+2•(n-1)+3•(n-2)+…+(n-1)•2+n•1=
16
n(n+1)(n+2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

22、用數(shù)學(xué)歸納法證明(1•22-2•32)+(3•42-4•52)+…+[(2n-1)(2n)2-2n(2n+1)2]=-n(n+1)(4n+3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:“1×4+2×7+3×10+…+n(3n+1)=n(n+1)2,n∈N+”,當(dāng)n=1時(shí),左端為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
11
24
(n∈N*)
時(shí),由n=k到n=k+1時(shí),不等式左邊應(yīng)添加的式子為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明
1
n+1
+
1
n+2
+
1
n+3
+…+
1
n+n
1
24
(n∈N*)由n=k到n=k+1時(shí),不等式左邊應(yīng)添加的項(xiàng)是( 。

查看答案和解析>>

同步練習(xí)冊答案