精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
已知函數,且對于任意實數,恒有
(1)求函數的解析式;
(2)函數有幾個零點?
(1).
(2)時,無零點;
時,有兩個零點;
時有三個零點;
時,有四個零點.
本試題主要是考查了函數解析式的求解以及函數與方程的綜合運用。
(1)根據已知中由題設得, ,則
所以 所以對于任意實數恒成立,得到b的值。
(2)令,則,然后分析函數單調性,缺的給你極值的大小進而確定零點的個數。
解:(1)由題設得,                         ……1分
,則,                         ……2分
所以 所以對于任意實數恒成立.
.                                                     ……3分
.             ……………………………………………4分
(2)令,則.   ……6分
,則,當變化時,的變化列表如下.




0

1


+
0

0
+
0


遞增
極大值
遞減
極小值1
遞增
極大值
遞減
……9分
時,無零點;
時,有兩個零點;
時有三個零點;
時,有四個零點. ……………………………………………………12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分16分)
已知,其中是自然常數,
(1)討論時, 的單調性、極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數,使的最小值是3,如果存在,求出的值;如果不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

在區(qū)間上的最大值是(   )
A.-2B.0C.2D.4

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)若a>0,求函數的最小值;
(2)若a是從1,2,3三個數中任取一個數,b是從2,3,4,5四個數中任取一個數,求f (x)>b恒成立的概率。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知是函數的一個極值點。
(Ⅰ)求;
(Ⅱ)求函數的單調區(qū)間;
(Ⅲ)若直線與函數的圖象有3個交點,求的取值范圍。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數
(Ⅰ) 求函數的單調區(qū)間;
(Ⅱ)若函數的圖像在點處的切線的傾斜角為,問:在什么范圍取值時,對于任意的,函數g(x)=x3 +x2在區(qū)間上總存在極值?
(Ⅲ)當時,設函數,若在區(qū)間上至少存在一個
使得成立,試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分14分)
設函數
⑴當且函數在其定義域上為增函數時,求的取值范圍;
⑵若函數處取得極值,試用表示
⑶在⑵的條件下,討論函數的單調性。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ln x-.
(1)若a>0,試判斷f(x)在定義域內的單調性;
(2)若f(x)在[1,e]上的最小值為,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

是定義在R上的奇函數,且,當x>0時,有的導數小于零恒成立,則不等式的解集是(    )
A.(一2,0)(2,+ B.(一2,0)(0,2)
C.(-,-2)(2,+ D.(-,-2)(0,2)

查看答案和解析>>

同步練習冊答案