設(shè)f(x)=x2+bx+1,且f(-1)=f(3),則f(x)>0的解集是( 。
分析:由f(x)=x2+bx+1,且f(-1)=f(3),解得b=-2.故f(x)=x2-2x+1=(x-1)2,由此能求出f(x)>0的解集.
解答:解:∵f(x)=x2+bx+1,且f(-1)=f(3),
-
b
2
=
-1+3
2
1-b+1=9+3b+1
,
解得b=-2.
∴f(x)=x2-2x+1=(x-1)2
∴f(x)>0的解集為{x|x≠1}.
故選C.
點(diǎn)評(píng):本題考查一元二次不等式的解法,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)f(x)和g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意的x∈[a,b],都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,[a,b]稱為“密切區(qū)間”,設(shè)f(x)=x2-3x+4與g(x)=2x-3在[a,b]上是“密切函數(shù)”,則它的“密切區(qū)間”可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2+ax+b,求證:||f(1)|,|f(2)||f(3)|中至少有一個(gè)不小于
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•松江區(qū)二模)已知函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,設(shè)F(x)=x2•f(x),則F(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=|x2-
1
2
|,若0<a<b,且f(a)=f(b),則ab的取值范圍是( 。
A、(0,
1
2
B、(0,
1
2
]
C、(0,2)
D、(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x2-bx+c對(duì)一切x∈R恒有f(1+x)=f(1-x)成立,f(0)=3,則當(dāng)x<0時(shí)f(bx)與f(cx)的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案