(2012•江蘇三模)△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a-c)cosB=bcosC.
(1)求角B的大。
(2)若△ABC的面積為為
3
3
2
,且b=
3
,求a+c的值.
分析:(1)利用正弦定理化簡已知的等式,整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡,根據(jù)sinA不為0,得到cosB的值,利用特殊角的三角函數(shù)值即可求出B的度數(shù);
(2)由B的度數(shù)求出sinB和cosB的值,利用三角形的面積公式表示出三角形ABC的面積,將sinB及已知的面積代入求出ac的值,利用余弦定理得到b2=a2+c2-2accosB,再利用完全平方公式整理后,將b,ac及cosB的值代入,開方即可求出a+c的值.
解答:解:(1)又A+B+C=π,即C+B=π-A,
∴sin(C+B)=sin(π-A)=sinA,
將(2a-c)cosB=bcosC,利用正弦定理化簡得:(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB=sinCcosB+sinBcosC=sin(C+B)=sinA,
在△ABC中,0<A<π,sinA>0,
∴cosB=
1
2
,又0<B<π,
則B=
π
3

(2)∵△ABC的面積為
3
3
2
,sinB=sin
π
3
=
3
2

∴S=
1
2
acsinB=
3
4
ac=
3
3
2
,
∴ac=6,又b=
3
,cosB=cos
π
3
=
1
2
,
∴利用余弦定理b2=a2+c2-2accosB得:a2+c2-ac=(a+c)2-3ac=(a+c)2-18=3,
∴(a+c)2=21,
則a+c=
21
點(diǎn)評:此題考查了正弦、余弦定理,誘導(dǎo)公式,兩角和與差的正弦函數(shù)公式,三角形的面積公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇三模)如圖,在平面直角坐標(biāo)系xoy中,圓C:(x+1)2+y2=16,點(diǎn)F(1,0),E是圓C上的一個(gè)動(dòng)點(diǎn),EF的垂直平分線PQ與CE交于點(diǎn)B,與EF交于點(diǎn)D.
(1)求點(diǎn)B的軌跡方程;
(2)當(dāng)D位于y軸的正半軸上時(shí),求直線PQ的方程;
(3)若G是圓上的另一個(gè)動(dòng)點(diǎn),且滿足FG⊥FE.記線段EG的中點(diǎn)為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇三模)數(shù)列{an}的前n項(xiàng)和為Sn,存在常數(shù)A,B,C,使得an+Sn=An2+Bn+C對任意正整數(shù)n都成立.
(1)若數(shù)列{an}為等差數(shù)列,求證:3A-B+C=0;
(2)若A=-
1
2
,B=-
3
2
,C=1
,設(shè)bn=an+n,數(shù)列{nbn}的前n項(xiàng)和為Tn,求Tn;
(3)若C=0,{an}是首項(xiàng)為1的等差數(shù)列,設(shè)P=
2012
i=1
1+
1
a
2
i
+
1
a
2
i+1
,求不超過P的最大整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇三模)在平面直角坐標(biāo)系中,不等式組
y≥0
x-2y≥0
x+y-3≤0
表示的區(qū)域?yàn)镸,t≤x≤t+1表示的區(qū)域?yàn)镹,若1<t<2,則M與N公共部分面積的最大值為
5
6
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇三模)假定某人每次射擊命中目標(biāo)的概率均為
12
,現(xiàn)在連續(xù)射擊3次.
(1)求此人至少命中目標(biāo)2次的概率;
(2)若此人前3次射擊都沒有命中目標(biāo),再補(bǔ)射一次后結(jié)束射擊;否則.射擊結(jié)束.記此人射擊結(jié)束時(shí)命中目標(biāo)的次數(shù)為X,求X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江蘇三模)已知數(shù)列{an}滿足a1=2,且對任意n∈N*,恒有nan+1=2(n+1)an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)區(qū)間[
an
3n
,
an+1
3(n+1)
]
中的整數(shù)個(gè)數(shù)為bn,求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊答案