曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是   
【答案】分析:直線y=2x+3在曲線y=ln(2x+1)上方,把直線平行下移到與曲線相切,切點到直線2x-y+3=0的距離即為所求的最短距離.由直線2x-y+3=0的斜率,令曲線方程的導(dǎo)函數(shù)等于已知直線的斜率即可求出切點的橫坐標(biāo),把求出的橫坐標(biāo)代入曲線方程即可求出切點的縱坐標(biāo),然后利用點到直線的距離公式求出切點到已知直線的距離即可.
解答:解:因為直線2x-y+3=0的斜率為2,
所以令y′==2,解得:x=1,
把x=1代入曲線方程得:y=0,即曲線上過(1,0)的切線斜率為2,
則(1,0)到直線2x-y+3=0的距離d==,
即曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是
故答案為:
點評:在曲線上找出斜率和已知直線斜率相等的點的坐標(biāo)是解本題的關(guān)鍵.同時要求學(xué)生掌握求導(dǎo)法則及點到直線的距離公式的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是( 。
A、
5
B、2
5
C、3
5
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ln(2x-1)上的點到直線2x-y+8=0的最短距離是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)設(shè)點P在曲線y=
1
2
ex
上,點Q在曲線y=ln(2x)上,則|PQ|最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=ln(2x)上任意一點P到直線y=2x的距離的最小值是
5
5
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P在曲線y=
1
2
ex+1上,點Q在曲線y=ln(2x-2)上,則|PQ|最小值為(  )
A、1-ln2
B、
2
(2-ln2)
C、1+ln2
D、
2
(1+ln2)

查看答案和解析>>

同步練習(xí)冊答案