已知,命題,命題.⑴若命題為真命題,求實數(shù)的取值范圍;⑵若命題為真命題,命題為假命題,求實數(shù)的取值范圍.
(1),(2).

試題分析:(1)此小題即為恒成立問題,只需當(dāng)時,恒成立即可;(2)對于q為真,只要,而命題為真命題,命題為假命題反映的是命題p與命題q一個為真另一個為假,分類討論即可.
試題解析:因為命題,令,所以,根據(jù)題意,只要時,即可,也就是,即;⑵由⑴可知,當(dāng)命題p為真命題時,,命題q為真命題時,,解得,因為命題為真命題,命題為假命題,所以命題p與命題q一真一假,當(dāng)命題p為真,命題q為假時,,當(dāng)命題p為假,命題q為真時,,綜上所述:.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)命題:“若,則有實根”.
(1)試寫出命題的逆否命題;
(2)判斷命題的逆否命題的真假,并寫出判斷過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題:存在使得成立,命題:對于任意,函數(shù)恒有意義.
(1)若是真命題,求實數(shù)的取值范圍;
(2)若是假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題中所有正確的是:______
(1)每個定義域關(guān)于原點對稱的函數(shù)都可以分解為一個奇函數(shù)與一個偶函數(shù)的和.
(2)若f(x)可分解為一個奇函數(shù)與一個偶函數(shù)的和,則這種分解方法只有一種.
(3)非零奇函數(shù)與非零偶函數(shù)的和必為非奇非偶函數(shù).
(4)f(x)=
9-x2
|x+5|+|3-x|
為非奇非偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)有兩個命題:①方程x2+ax+9=0沒有實數(shù)根;②實數(shù)a為非負(fù)數(shù).如果這兩個命題中有且只有一個是真命題,那么實數(shù)a的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題;命題均是第一象限的角,且,則,下列命題是真命題的是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個命題:
,”是全稱命題;
命題“,”的否定是“,使”;
,則;  
為假命題,則、均為假命題.
其中真命題的序號是( )
A.①②B.①④C.②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列結(jié)論:
①若命題p:?x0∈R,tan x0=2;命題q:?x∈R,x2-x+>0.則命題“p∧(q)”是假命題;
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3;
③“設(shè)a、b∈R,若ab≥2,則a2+b2>4”的否命題為:“設(shè)a、b∈R,若ab<2,則a2+b2≤4”.
其中正確結(jié)論的序號為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題p:.則為(        ).
A.,B.
C.,D.

查看答案和解析>>

同步練習(xí)冊答案