【題目】國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼吸酒精含量閥值與檢驗(yàn)》國(guó)家標(biāo)準(zhǔn),新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于20毫克/百毫升,小于80毫克/百毫克升為飲酒駕車,血液中的酒精含量大于或等于80毫克/百毫升為醉酒駕車,經(jīng)過(guò)反復(fù)試驗(yàn),喝1瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下:

該函數(shù)模型如下:

根據(jù)上述條件,回答以下問(wèn)題:

(1)試計(jì)算喝1瓶啤酒后多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?

(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車?(時(shí)間以整小時(shí)計(jì)算)

(參數(shù)數(shù)據(jù): , ,

【答案】1喝1瓶啤酒后1.5小時(shí)血液中的酒精含量達(dá)到最大值44.42毫克/百毫升;(21瓶啤酒后需6小時(shí)后才可以合法駕車.

【解析】試題分析:(1)由圖可知,當(dāng)函數(shù)取得最大值時(shí), ,根據(jù)函數(shù)模型,即可求出最大值;(2))由題意知,當(dāng)車輛駕駛?cè)藛T血液中的酒精小于20毫克/百毫升時(shí)可以駕車,此時(shí),然后解不等式,即可求出.

試題解析:(1)由圖可知,當(dāng)函數(shù)取得最大值時(shí),

此時(shí),

當(dāng),即時(shí),函數(shù)取得最大值為.

故喝1瓶啤酒后1.5小時(shí)血液中的酒精含量達(dá)到最大值44.42毫克/百毫升.

(2)由題意知,當(dāng)車輛駕駛?cè)藛T血液中的酒精小于20毫克/百毫升時(shí)可以駕車,此時(shí).

,得: ,

兩邊取自然對(duì)數(shù)得:

,故喝1瓶啤酒后需6小時(shí)后才可以合法駕車.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面五邊形ABCDE中,ABCE,且AE2AEC60°,CDED,cosEDC.將△CDE沿CE折起,使點(diǎn)D移動(dòng)到P的位置,且AP得到四棱錐PABCE.

(1)求證:AP⊥平面ABCE;

(2)記平面PAB與平面PCE相交于直線l,求證:ABl.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a、bcABC的三個(gè)內(nèi)角A、BC的對(duì)邊,向量=-1,),=cosAsinA),若,且acosB+bcosA=csinC,則角B的大小為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種植基地將編號(hào)分別為1,2,3,4,5,6的六個(gè)不同品種的馬鈴薯種在如圖所示的

A

B

C

D

E

F

這六塊實(shí)驗(yàn)田上進(jìn)行對(duì)比試驗(yàn),要求這六塊實(shí)驗(yàn)田分別種植不同品種的馬鈴薯,若種植時(shí)要求編號(hào)1,3,5的三個(gè)品種的馬鈴薯中至少有兩個(gè)相鄰,且2號(hào)品種的馬鈴薯不能種植在A、F這兩塊實(shí)驗(yàn)田上,則不同的種植方法有 ( )

A. 360種 B. 432種 C. 456種 D. 480種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)的橢圓的兩焦點(diǎn)分別為雙曲線的頂點(diǎn),直線與橢圓交于、兩點(diǎn),且,點(diǎn)是橢圓上異于的任意一點(diǎn),直線外的點(diǎn)滿足. 

(1)求點(diǎn)的軌跡方程;

(2)試確定點(diǎn)的坐標(biāo),使得的面積最大,并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著電商的快速發(fā)展,快遞業(yè)突飛猛進(jìn),到目前,中國(guó)擁有世界上最大的快遞市場(chǎng).某快遞公司收取快遞費(fèi)的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,在收費(fèi)10元的基礎(chǔ)上,每超過(guò)(不足,按計(jì)算)需再收5.

該公司將最近承攬的100件包裹的重量統(tǒng)計(jì)如下:

公司對(duì)近60天,每天攬件數(shù)量統(tǒng)計(jì)如下表:

以上數(shù)據(jù)已做近似處理,并將頻率視為概率.

(1)計(jì)算該公司未來(lái)5天內(nèi)恰有2天攬件數(shù)在101~300之間的概率;

(2)①估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;

②根據(jù)以往的經(jīng)驗(yàn),公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),其余的用作其他費(fèi)用.目前前臺(tái)有工作人員3人,每人每天攬件不超過(guò)150件,日工資100元.公司正在考慮是否將前臺(tái)工作人員裁減1人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,若你是決策者,是否裁減工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中

(1)討論極值點(diǎn)的個(gè)數(shù);

(2)設(shè),函數(shù),若,)滿足,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面直角坐標(biāo)系,以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(2)若為曲線上的動(dòng)點(diǎn),求中點(diǎn)到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)證明函數(shù)上為減函數(shù);

2)求函數(shù)的定義域,并求其奇偶性;

3)若存在,使得不等式能成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案