【題目】已知函數(shù)().
(1)若曲線(xiàn)在點(diǎn)處的切線(xiàn)經(jīng)過(guò)點(diǎn),求的值;
(2)若在區(qū)間上存在極值點(diǎn),判斷該極值點(diǎn)是極大值點(diǎn)還是極小值點(diǎn),并求的取值范圍;
(3)若當(dāng)時(shí), 恒成立,求的取值范圍.
【答案】(1)(2)為極小值點(diǎn). 的取值范圍是(3)
【解析】試題分析:(1)由導(dǎo)數(shù)幾何意義得切線(xiàn)斜率為,再根據(jù)點(diǎn)斜式寫(xiě)出切線(xiàn)方程,最后代入點(diǎn)坐標(biāo)求的值;(2)由題意轉(zhuǎn)化為對(duì)應(yīng)方程在區(qū)間上有解,再利用變量分離法轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)值域,即得的取值范圍;最后根據(jù)符號(hào)變化規(guī)律確定該極值點(diǎn)是極大值點(diǎn)還是極小值點(diǎn),(3)恒成立問(wèn)題,一般利用變量分離法轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值: 最大值,再利用導(dǎo)數(shù)研究函數(shù)最大值,即得的取值范圍.
試題解析:解:(1)對(duì)求導(dǎo),得.
因此.又,
所以,曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.
將, 代入,得.解得.
(2)的定義域?yàn)?/span>.
.
設(shè)的一個(gè)極值點(diǎn)為,則,即.
所以 .
當(dāng)時(shí), ;當(dāng)時(shí), .
因此在上為減函數(shù),在上為增函數(shù).
所以是的唯一的極值點(diǎn),且為極小值點(diǎn).
由題設(shè)可知.
因?yàn)楹瘮?shù)在上為減函數(shù),
所以,即.
所以的取值范圍是.
(3)當(dāng)時(shí), 恒成立,則恒成立,
即對(duì)恒成立.
設(shè),求導(dǎo)得.
設(shè)(),顯然在上為減函數(shù).
又,則當(dāng)時(shí), ,從而;
當(dāng)時(shí), ,從而.
所以在上是增函數(shù),在上是減函數(shù).
所以,所以,即的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,
(1)當(dāng)時(shí),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)討論函數(shù)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某直三棱柱(側(cè)棱與底面垂直的三棱柱)被削去上底后的直觀(guān)圖與三視圖中的側(cè)視圖、俯視圖,在直觀(guān)圖中, 是的中點(diǎn),側(cè)視圖是直角梯形,俯視圖是等腰直角三角形,有關(guān)數(shù)據(jù)如圖所示.
(1)求出該幾何體的體積;
(2)若是的中點(diǎn),求證: 平面;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程是(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程是.
(1)求直線(xiàn)的普通方程和曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),若直線(xiàn)與曲線(xiàn)交于, 兩點(diǎn),且,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在探究實(shí)系數(shù)一元二次方程的根與系數(shù)的關(guān)系時(shí),可按下述方法進(jìn)行:
設(shè)實(shí)系數(shù)一元二次方程……①
在復(fù)數(shù)集內(nèi)的根為, ,則方程①可變形為,
展開(kāi)得.……②
比較①②可以得到:
類(lèi)比上述方法,設(shè)實(shí)系數(shù)一元次方程(且)在復(fù)數(shù)集內(nèi)的根為, ,…, ,則這個(gè)根的積 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為: (為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為.
(1)求直角坐標(biāo)系下曲線(xiàn)與曲線(xiàn)的方程;
(2)設(shè)為曲線(xiàn)上的動(dòng)點(diǎn),求點(diǎn)到上點(diǎn)的距離的最大值,并求此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù), ,則對(duì)于不同的實(shí)數(shù),函數(shù)的單調(diào)區(qū)間個(gè)數(shù)不可能是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 5個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線(xiàn)過(guò)點(diǎn),求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求函數(shù)在區(qū)間上的最大值;
(3)若函數(shù)有兩個(gè)不同的零點(diǎn), ,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)若,求函數(shù)的極值.
(2)若在有唯一的零點(diǎn),求的取值范圍.
(3)若,設(shè),求證: 在內(nèi)有唯一的零點(diǎn),且對(duì)(2)中的,滿(mǎn)足.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com