【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD= BC, =
(1)求證:DE⊥平面PAC;
(2)若直線PE與平面PAC所成角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

【答案】
(1)證明:以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,

設(shè)AB=AD= BC=2,

則D(0,2,0),E(2,1,0),A(0,0,0),C(2,4,0),

=(2,﹣1,0), =(2,4,0),

=4﹣4+0=0,∴DE⊥AC,

∵PA⊥平面ABCD,DE平面ABCD,∴DE⊥PA,

∵PA∩AC=A,∴DE⊥平面PAC


(2)解:設(shè)P(0,0,t),(t>0), =(0,0,t), =(2,4,0), =(2,1,﹣t),

設(shè)平面PAC的法向量 =(x,y,z),

,取x=2,得 =(2,﹣1,0),

∵直線PE與平面PAC所成角的正弦值為 ,

= = ,解得t=1,或t=﹣1(舍),

∴P(0,0,1), =(2,4,﹣1), =(0,2,﹣1),

設(shè)平面PCD的法向量 =(a,b,c),

,取b=1,得 =(﹣1,1,2),

設(shè)二面角A﹣PC﹣D的平面角為θ,

則cosθ= = =

二面角A﹣PC﹣D的平面角的余弦值為


【解析】(1)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能證明DE⊥平面PAC.(2)求出平面PAC的法向量和平面PCD的法向量,利用向量法能求出二面角A﹣PC﹣D的平面角的余弦值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解直線與平面垂直的判定(一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4 , 坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (θ為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)).(10分)
(1)若a=﹣1,求C與l的交點(diǎn)坐標(biāo);
(2)若C上的點(diǎn)到l距離的最大值為 ,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln xa(x-1),g(x)=ex.

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)若函數(shù)h(x)=f(x+1)+g(x),當(dāng)x>0時(shí),h(x)>1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 某廠一批產(chǎn)品的次品率為 ,則任意抽取其中10件產(chǎn)品一定會發(fā)現(xiàn)一件次品

B. 擲一枚硬幣,連續(xù)出現(xiàn)5次正面向上,第六次出現(xiàn)反面向上的概率與正面向上的概率仍然都為0.5

C. 某醫(yī)院治療一種疾病的治愈率為10%,那么前9個(gè)病人都沒有治愈,第10個(gè)人就一定能治愈

D. 氣象部門預(yù)報(bào)明天下雨的概率是90%,說明明天該地區(qū)90%的地方要下雨,其余10%的地方不會下雨

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是最近十屆奧運(yùn)會的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當(dāng)屆

獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù):

年份

1972

1976

1980

1984

1988

1992

1996

2000

2004

2008

屆別

20

21

22

23

24

25

26

27

28

29

主辦國家

聯(lián)邦

德國

加拿大

蘇聯(lián)

美國

韓國

西班牙

美國

澳大

利亞

希臘

中國

上屆金牌數(shù)

5

0

49

未參加

6

1

37

9

4

32

當(dāng)界金牌數(shù)

13

0

80

83

12

13

44

16

6

51

某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運(yùn)會之間的關(guān)系,

(1)求出主辦國在上屆所獲金牌數(shù)(設(shè)為)與在當(dāng)屆所獲金牌數(shù)(設(shè)為)之間的線性回歸方程

其中

(2)在2008年第29屆北京奧運(yùn)會上日本獲得9塊金牌,則據(jù)此線性回歸方程估計(jì)在2020 年第 32 屆東

京奧運(yùn)會上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將邊長為6的等邊三角形各切去一個(gè)全等的四邊形,再沿虛線折起,做成一個(gè)無蓋的正三棱柱形的容器.

(1)若這個(gè)容器的底面邊長為,容積為,寫出關(guān)于的函數(shù)關(guān)系式并注明定義域;

(2)求這個(gè)容器容積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCDABAD,ACCD,∠ABC=60°,PAABBCEPC的中點(diǎn).

(1)證明:AE⊥平面PCD;

(2)求二面角APDC的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了探究某市高中理科生在高考志愿中報(bào)考“經(jīng)濟(jì)類”專業(yè)是否與性別有關(guān),現(xiàn)從該市高三理科生中隨機(jī)抽取50各學(xué)生進(jìn)行調(diào)查,得到如下2×2列聯(lián)表:(單位:人).

報(bào)考“經(jīng)濟(jì)類”

不報(bào)“經(jīng)濟(jì)類”

合計(jì)

6

24

30

14

6

20

合計(jì)

20

30

50

(Ⅰ)據(jù)此樣本,能否有99%的把握認(rèn)為理科生報(bào)考“經(jīng)濟(jì)類”專業(yè)與性別有關(guān)?
(Ⅱ)若以樣本中各事件的頻率作為概率估計(jì)全市總體考生的報(bào)考情況,現(xiàn)從該市的全體考生(人數(shù)眾多)中隨機(jī)抽取3人,設(shè)3人中報(bào)考“經(jīng)濟(jì)類”專業(yè)的人數(shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布及數(shù)學(xué)期望.
附:參考數(shù)據(jù):

P(X2≥k)

0.05

0.010

k

3.841

6.635

(參考公式:X2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(2x)x,則下列結(jié)論中正確的是( 。
A.若﹣3≤m<n,則f(m)<f(n)
B.若m<n≤0,則f(m)<f(n)
C.若f(m)<f(n),則m2<n2
D.若f(m)<f(n),則m3<n3

查看答案和解析>>

同步練習(xí)冊答案