11.如圖,為測(cè)得河岸上塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10m到位置D,測(cè)得∠BDC=45°,則塔AB的高是10$\sqrt{6}$m.

分析 在△BCD中使用正弦定理計(jì)算BC,再在△ABC中計(jì)算AB.

解答 解:由題意得∠BCD=105°,∠D=45°,CD=10,∠ACB=60°,
∴∠CBD=30°,
在△BCD中,由正弦定理得$\frac{BC}{sin45°}=\frac{10}{sin30°}$,解得BC=10$\sqrt{2}$,
∵tan∠ACB=$\frac{AB}{BC}$=$\sqrt{3}$,
∴AB=$\sqrt{3}$BC=10$\sqrt{6}$.
故答案為:10$\sqrt{6}$.

點(diǎn)評(píng) 本題考查了解三角形的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足sin2A+sin2B=sin2C-sinAsinB.
(Ⅰ)求角C;
(Ⅱ)若$c=2\sqrt{6}$,△ABC的中線CD=2,求△ABC面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知向量$\overrightarrow{a}$=(cosωx,sinωx),$\overrightarrow$=(cosωx,$\sqrt{3}$cosωx),其中0<ω<2,函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-$\frac{1}{2}$,其中圖象的一條對(duì)稱軸為x=$\frac{π}{6}$.
(1)求函數(shù)f(x)的表達(dá)式及單調(diào)遞增區(qū)間;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{2π}{3}$個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的對(duì)稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,四棱錐P-ABCD中,底面ABCD邊長(zhǎng)為4的正方形,PA=PD=2$\sqrt{2}$,平面PAD⊥平面ABCD.
(Ⅰ)求證:平面PAD⊥平面PCD;
(Ⅱ)點(diǎn)E為線段PD上一點(diǎn),且三棱錐E-BCD的體積為$\frac{8}{3}$,求平面EBC與平面PAB所成銳二面角的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知正數(shù)x、y、z滿足x2+y2+z2=1,則S=$\frac{1}{{2xy{z^2}}}$的最小值為( 。
A.3B.$\frac{9}{2}$C.4D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若復(fù)數(shù)z1=1+5i,z2=-3+7i,則復(fù)數(shù)z=z1-z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A.第四象限B.第二象限C.第三象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.?dāng)?shù)列觀察下表,則第106  行的各數(shù)之和等于2112

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若曲線f(x)=x4-x在點(diǎn)P處的切線垂直于直線x-y=0,則點(diǎn)P的坐標(biāo)為(0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.復(fù)數(shù)${({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^3}$的共軛復(fù)數(shù)是( 。
A.-iB.iC.-1D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案