扇形AOB中心角為60°,所在圓半徑為,它按如下(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.
(Ⅰ)矩形CDEF的頂點C、D在扇形的半徑OB上,頂點E在圓弧AB上,頂點F在半徑OA上,設∠EOB=θ;
(Ⅱ)點M是圓弧AB的中點,矩形CDEF的頂點D、E在圓弧AB上,且關于直線OM對稱,頂點C、F分別在半徑OB、OA上,設∠EOM=;
試研究(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?
最大值
解析試題分析:(1)運用公式時要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當選擇公式進行變形;(3)把形如化為,可進一步研究函數(shù)的周期、單調(diào)性、最值和對稱性.
試題解析: 解(1)在中,設,則
又
當即時,
(Ⅱ)令與的交點為,的交點為,則,
于是,又
當即時,取得最大值.
,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式
考點:把實際問題轉(zhuǎn)化為三角函數(shù)求最值問題.
科目:高中數(shù)學 來源: 題型:解答題
如圖⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于點N,過點N的切線交CA的延長線于P
(1)求證:
(2)若⊙O的半徑為,OA=OM,求MN的長
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于點N,過點N的切線交CA的延長線于P.
(1)求證:;
(2)若⊙O的半徑為,OA=OM,求MN的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知:如圖所示,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,DF⊥BC于F.求證:AE·BF·AB=CD3.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
(幾何證明選講選做題)如圖3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=,點E,F分別為線段AB,CD的中點,則EF= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com