已知數(shù)列{an}的前n項和,且Sn的最大值為8.
(1)確定常數(shù)k,求an;
(2)求數(shù)列的前n項和Tn
(1)(2)
解: (1)當(dāng)時,取最大值,即,故,從而,又,所以
(2)因為,
所以
【點評】本題考查數(shù)列的通項,遞推、錯位相減法求和以及二次函數(shù)的最值的綜合應(yīng)用.利用來實現(xiàn)的相互轉(zhuǎn)化是數(shù)列問題比較常見的技巧之一,要注意不能用來求解首項,首項一般通過來求解.運(yùn)用錯位相減法求數(shù)列的前n項和適用的情況:當(dāng)數(shù)列通項由兩項的乘積組成,其中一項是等差數(shù)列、另一項是等比數(shù)列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在ΔABC中,三個內(nèi)角A,B,C對應(yīng)的邊分別為,且A,B,C成等差數(shù)列,也成等差數(shù)列,求證ΔABC為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)投資1千萬元于一個高科技項目,每年可獲利25%.由于企業(yè)間競爭激烈,每年底需要從利潤中取出資金萬元進(jìn)行科研、技術(shù)改造與廣告投入,方能保持原有的利潤增長率.設(shè)經(jīng)過年后該項目的資金為萬元.
1)寫出數(shù)列的前三項,并猜想寫出通項.
2)求經(jīng)過多少年后,該項目的資金可以達(dá)到或超過千萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列結(jié)論正確的是(         )(寫出所有正確結(jié)論的序號)
⑴常數(shù)列既是等差數(shù)列,又是等比數(shù)列;
⑵若直角三角形的三邊成等差數(shù)列,則、之比為
⑶若三角形的三內(nèi)角、、成等差數(shù)列,則;
⑷若數(shù)列的前項和為,則的通項公式;
⑸若數(shù)列的前項和為,則為等比數(shù)列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列中,如果數(shù)列是等差數(shù)列,則 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

中角、成等差數(shù)列,則=(  )
A.B.C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)等差數(shù)列的前n項和,若( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

各項不為零的等差數(shù)列中,,則的值為( )
A.0B.4C.0或4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列中,, ,則 (   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案