【題目】已知函數(shù).
(1)討論在定義域內(nèi)的極值點的個數(shù);
(2)若對,恒成立,求實數(shù)的取值范圍;
(3)證明:若,不等式成立.
【答案】(1)當(dāng)時,函數(shù)有兩個極值點;當(dāng)時,函數(shù)沒有極值點(2)(3)證明見解析
【解析】
(1)求導(dǎo)可得,轉(zhuǎn)化問題為的變號零點個數(shù),分別討論,,的情況即可;
(2)轉(zhuǎn)化問題為在上恒成立,設(shè),利用導(dǎo)函數(shù)求得的最小值,進而求解;
(3)由(2)可得恒成立,即,則欲證,只需證,設(shè),進而利用導(dǎo)函數(shù)求得的最小值大于等于0即可.
(1)解:由題,
設(shè),令,即方程,,
當(dāng)時,,則,此時沒有極值點;
當(dāng)時,,設(shè)方程兩根為,,不妨設(shè),
則,,則,
當(dāng)或時,;
當(dāng)時,,
此時,是函數(shù)的兩個極值點,
當(dāng)時,,設(shè)方程兩根為,,
則,,所以,,
所以當(dāng)時,,故沒有極值點,
綜上,當(dāng)時,函數(shù)有兩個極值點;當(dāng)時,函數(shù)沒有極值點.
(2)解:由題,在上恒成立,
則在上恒成立,
即在上恒成立,
設(shè),
則,
因為,
當(dāng)時,,則單調(diào)遞減;當(dāng),,則單調(diào)遞增;
所以,
所以
(3)證明:由(2)知,所以恒成立,
即,
欲證,
只需證,
設(shè),則,
當(dāng)時,,則單調(diào)遞減;當(dāng)時,,則單調(diào)遞增,
所以,即,
所以當(dāng)時,不等式成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上.
(1)求橢圓的方程;
(2)若不過原點的直線與橢圓相交于兩點,與直線相交于點,且是線段的中點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級四位學(xué)生參加了文科綜合知識競賽,在競賽結(jié)果公布前,地理老師預(yù)測得冠軍的是或;歷史老師預(yù)測得冠軍的是;政治老師預(yù)測得冠軍的不可能是或;語文老師預(yù)測得冠軍的是,而班主任老師看了競賽結(jié)果后說以上只有兩位老師都說對了,則得冠軍的是_____。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計的頻率分布直方圖如圖所示.
(1)估計這組數(shù)據(jù)平均數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取5個,再從這5個中隨機抽取2個,求這2個芒果都來自同一個質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總計,該種植園中還未摘下的芒果大約還有10000個,經(jīng)銷商提出以下兩種收購方案:
方案①:所有芒果以9元/千克收購;
方案②:對質(zhì)量低于250克的芒果以2元/個收購,對質(zhì)量高于或等于250克的芒果以3元/個收購.
通過計算確定種植園選擇哪種方案獲利更多.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某電視臺主辦的歌手大獎賽上七位評委為甲、乙兩名選手打出的分數(shù)的莖葉圖(其中為數(shù)字0~9中的一個),則下列結(jié)論中正確的是( )
A. 甲選手的平均分有可能和乙選手的平均分相等
B. 甲選手的平均分有可能比乙選手的平均分高
C. 甲選手所有得分的中位數(shù)比乙選手所有得分的中位數(shù)低
D. 甲選手所有得分的眾數(shù)比乙選手所有得分的眾數(shù)高
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】吸煙有害健康,遠離煙草,珍惜生命。據(jù)統(tǒng)計一小時內(nèi)吸煙5支誘發(fā)腦血管病的概率為0.02,一小時內(nèi)吸煙10支誘發(fā)腦血管病的概率為0.16.已知某公司職員在某一小時內(nèi)吸煙5支未誘發(fā)腦血管病,則他在這一小時內(nèi)還能繼吸煙5支不誘發(fā)腦血管病的概率為( )
A. B. C. D. 不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】計算機考試分理論考試與實際操作兩部分,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機考試“合格”,并頒發(fā)合格證書甲、乙、丙三人在理論考試中“合格”的概率依次為,,,在實際操作考試中“合格”的概率依次為,,,所有考試是否合格相互之間沒有影響.
(1)假設(shè)甲、乙、丙三人同時進行理論與實際操作兩項考試,誰獲得合格證書的可能性最大?
(2)這三人進行理論與實際操作兩項考試后,求恰有兩人獲得合格證書的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求具有如下性質(zhì)的質(zhì)數(shù)的最大值:存在1,2,,的兩個排列(可以相同)與,使被除所得的余數(shù)互不相同.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝三角是二項式系數(shù)在三角形中的一種幾何排列,是中國古代數(shù)學(xué)的杰出研究成果之一.在歐洲,左下圖叫帕斯卡三角形,帕斯卡在1654年發(fā)現(xiàn)的這一規(guī)律,比楊輝要遲393年,比賈憲遲600年.某大學(xué)生要設(shè)計一個程序框圖,按右下圖標注的順序?qū)⒈砩系臄?shù)字輸出,若第5次輸出數(shù)“1”后結(jié)束程序,則空白判斷框內(nèi)應(yīng)填入的條件為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com