【題目】在多面體中,四邊形是正方形,平面平面,.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得平面與平面所成的銳二面角的大小為,若存在,求出的值;若不存在,說(shuō)明理由.
【答案】(1)證明見解析;(2)答案見解析.
【解析】
(1)由面面垂直的性質(zhì)定理證明線面垂直即可;
(2)在平面DAE內(nèi),過(guò)D作AD的垂線DH,以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DH所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,利用平面FAG的法向量和平面EAD的法向量求二面角的余弦值即可確定線段上是否存在點(diǎn).
(1)∵平面ADE⊥平面ABCD,平面ADE∩平面ABCD=AD,
正方形中CD⊥AD,∴CD⊥平面ADE.
(2)由(1)知平面ABCD⊥平面AED.
在平面DAE內(nèi),過(guò)D作AD的垂線DH,則DH⊥平面ABCD,
以點(diǎn)D為坐標(biāo)原點(diǎn),DA,DC,DH所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系,
則,,
,,
設(shè),則.
設(shè)平面FAG的一個(gè)法向量,則,
,即,
令可得:,
易知平面EAD的一個(gè)法向量,
由已如得.
化簡(jiǎn)可得:,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,兩個(gè)焦點(diǎn)與短軸一個(gè)頂點(diǎn)構(gòu)成等腰直角三角形,過(guò)點(diǎn)且與x軸不重合的直線l與橢圓交于M,N不同的兩點(diǎn).
(Ⅰ)求橢圓P的方程;
(Ⅱ)當(dāng)AM與MN垂直時(shí),求AM的長(zhǎng);
(Ⅲ)若過(guò)點(diǎn)P且平行于AM的直線交直線于點(diǎn)Q,求證:直線NQ恒過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+(a,b∈Z),曲線y=f(x)在點(diǎn)(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點(diǎn)的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,過(guò)且斜率為的直線與交于,兩點(diǎn),.
(1)求的方程;
(2)求過(guò)點(diǎn),且與的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.
(1)求的直角坐標(biāo)方程和的直角坐標(biāo);
(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若在上單調(diào)遞減,求的取值范圍;
(2)若在處取得極值,判斷當(dāng)時(shí),存在幾條切線與直線平行,請(qǐng)說(shuō)明理由;
(3)若有兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)F為橢圓C的左焦點(diǎn),T為直線上任意一點(diǎn),過(guò)F作TF的垂線交橢圓C于點(diǎn)P,Q.
(i)證明:OT平分線段PQ(其中O為坐標(biāo)原點(diǎn));
(ii)當(dāng)最小時(shí),求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.
(1)求的直角坐標(biāo)方程和的直角坐標(biāo);
(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com