設(shè)函數(shù)f(x)=2ex+1,則其導(dǎo)函數(shù)f′(x)=________.

2ex
分析:由于函數(shù)f(x)=2ex+1,故導(dǎo)函數(shù)f′(x)=(2ex)′+1′=2ex
解答:∵函數(shù)f(x)=2ex+1,∴導(dǎo)函數(shù)f′(x)=(2ex)′+1′=2ex,
故答案為 2ex
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2ex+ax3+bx2在點(diǎn)(1,f(1))處的切線方程為y=(3e-3)x-2e+
53

(l)求函數(shù)f(x)的解析式;
(2)若g(x)=f(x)-3ex+3x,求g(x)在[-4,t]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浙江二模)已知函數(shù)f(x)=
(x-a)2
lnx
(其中a為常數(shù)).
(Ⅰ)當(dāng)a=0時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ) 當(dāng)0<a<1時(shí),設(shè)函數(shù)f(x)的3個(gè)極值點(diǎn)為x1,x2,x3,且x1<x2<x3.證明:x1+x3
2
e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2x2,g(x)=alnx(a∈R)
(1)設(shè)a=4e,證明:f(x)≥g(x);
(2)令h(x)=
1
2
xf(x)-3x2g′(x),若h(x)在(-2,2)內(nèi)的值域?yàn)殚]區(qū)間,求實(shí)數(shù)a的取值范圍;
(3)求證:
ln24
24
+
ln34
34
+…+
lnn4
n4
2
e
(n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的若f(x)=ex,則
lim
△x→0
f(1-2△x)-f(1)
△x
=
-2e
-2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺(tái)一模)設(shè)函數(shù)f(x)=m(x-
1
x
)-21nx,g(x)=
2e
x
(m是實(shí)數(shù),e是自然對(duì)數(shù)的底數(shù)).
(1)當(dāng)m=2e時(shí),求f(x)+g(x)的單調(diào)區(qū)間;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案