【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,前n項(xiàng)和為Sn.數(shù)列{bn}為等比數(shù)列,b1=1,且b2S2=6,b2S3=8.

(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;

(2)求.

【答案】(1)ann,bn=2n1(2)

【解析】試題分析:(1)設(shè)等差數(shù)列{an}的公差為d,d>0,{bn}的公比為q,運(yùn)用等差數(shù)列和等比數(shù)列的通項(xiàng)公式和求和公式,解方程可得公差和公比,即可得到所求通項(xiàng)公式;

(2)明確通項(xiàng)的表達(dá)式,利用錯(cuò)位相減法求和.

試題解析:

(1)設(shè)等差數(shù)列{an}的公差為d,d>0,等比數(shù)列{bn}的公比為q

an=1+(n-1)d,bnqn-1.

依題意有

解得 (舍去).

ann,bn=2n-1.

(2)(1)Sn=1+2+…+nn(n+1),

=2,

+…+=2

=2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平面ADC∥平面A1B1C1 , B為線段AD的中點(diǎn),△ABC≈△A1B1C1 , 四邊形ABB1A1為正方形,平面AA1C1C丄平面ADB1A1 , A1C1=A1A,∠C1A1A= ,M為棱A1C1的中點(diǎn).
(Ⅰ)若N為線段DC1上的點(diǎn),且直線MN∥平面ADB1A1 , 試確定點(diǎn)N的位置;
(Ⅱ)求平面MAD與平面CC1D所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)求的值;

(II)求;

(III)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當(dāng)平面與平面垂直時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=4x++3,則對(duì)于y=f(x)在x<0時(shí),下列說法正確的是(  )
A.有最大值7
B.有最大值﹣7
C.有最小值7
D.有最小值﹣7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若a,b 是函數(shù) 的兩個(gè)不同的零點(diǎn),且a,b,-2 這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q 的值等于( )
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于區(qū)間[a,b](a<b),若函數(shù)同時(shí)滿足:①在[a,b]上是單調(diào)函數(shù),②函數(shù)在[a,b]的值域是[a,b],則稱區(qū)間[a,b]為函數(shù)的“保值”區(qū)間

(1)求函數(shù)的所有“保值”區(qū)間

(2)函數(shù)是否存在“保值”區(qū)間?若存在,求的取值范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)上的減函數(shù),,且 f [ f(x)]=16x-3.

(1)求

(2)若在(-2,3)單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)當(dāng)時(shí),有最大值1,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案