已知直角三角形的兩直角邊長(zhǎng)分別為,設(shè)計(jì)一個(gè)求該三角形周長(zhǎng)的算法.

答案略


解析:

由勾股定理,可求出斜邊,從而周長(zhǎng)

算法步驟如下:

第一步:輸入實(shí)數(shù);

第二步:計(jì)算的結(jié)果,并將這個(gè)結(jié)果賦給c;

第三步:執(zhí)行計(jì)算:

第四步:輸出

點(diǎn)評(píng):用自然語(yǔ)言描述算法,然后才能畫出程序框圖,寫出程序。因此,用自然描述算法是程序設(shè)計(jì)的基礎(chǔ)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、下列命題中,正確命題的序號(hào)為
④⑤

①經(jīng)過(guò)空間任意一點(diǎn)都可作唯一一個(gè)平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α;
③有兩個(gè)側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對(duì)棱互相垂直,則第三組對(duì)棱也一定互相垂直;
⑤三棱錐的四個(gè)面可以都是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:湖北省荊州中學(xué)2008高考復(fù)習(xí)立體幾何基礎(chǔ)題題庫(kù)一(有詳細(xì)答案)人教版 人教版 題型:044

已知Rt△ABC的兩直角邊AC2,BC3P為斜邊上一點(diǎn),沿CP將此直角三角形折成直二面角ACPB,當(dāng)AB71/2時(shí),求二面角PACB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC的兩直角邊AC=2,BC=3,P為斜邊上一

點(diǎn),沿CP將此直角三角形折成直二面角A—CP—B,當(dāng)AB=71/2時(shí),求二面角P—AC—B的大小。

  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖北省荊州市松滋二中高考數(shù)學(xué)限時(shí)訓(xùn)練(解析版) 題型:解答題

下列命題中,正確命題的序號(hào)為   
①經(jīng)過(guò)空間任意一點(diǎn)都可作唯一一個(gè)平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α;
③有兩個(gè)側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對(duì)棱互相垂直,則第三組對(duì)棱也一定互相垂直;
⑤三棱錐的四個(gè)面可以都是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省連云港市東海高級(jí)中學(xué)高考數(shù)學(xué)三模試卷(解析版) 題型:解答題

下列命題中,正確命題的序號(hào)為   
①經(jīng)過(guò)空間任意一點(diǎn)都可作唯一一個(gè)平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α;
③有兩個(gè)側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對(duì)棱互相垂直,則第三組對(duì)棱也一定互相垂直;
⑤三棱錐的四個(gè)面可以都是直角三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案