【題目】已知直線(xiàn)與拋物線(xiàn)相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線(xiàn)交曲線(xiàn)兩點(diǎn),當(dāng),且位于直線(xiàn)的兩側(cè)時(shí),證明: .

【答案】(Ⅰ) );(Ⅱ)見(jiàn)解析.

【解析】試題分析:Ⅰ先由判別式為零可得 的值,再根據(jù)三角形周長(zhǎng)可得進(jìn)而由橢圓定義可得方程;(設(shè)直線(xiàn)方程,聯(lián)立 ,根據(jù)直線(xiàn)斜率公式及韋達(dá)定理利用分析法證明即可.

試題解析:(Ⅰ) 因?yàn)橹本(xiàn)與拋物線(xiàn)相切,所以方程有等根,

,即,所以

又因?yàn)閯?dòng)點(diǎn)與定點(diǎn)所構(gòu)成的三角形周長(zhǎng)為6,且,

所以

根據(jù)橢圓的定義,動(dòng)點(diǎn)在以為焦點(diǎn)的橢圓上,且不在軸上,

所以,得,則

即曲線(xiàn)的方程為).

(Ⅱ)設(shè)直線(xiàn)方程 ,聯(lián)立,

△=-3+12>0,所以, 此時(shí)直線(xiàn)與曲線(xiàn)有兩個(gè)交點(diǎn), ,

設(shè) , ,則

,不妨取,

要證明恒成立,即證明

即證,也就是要證

即證由韋達(dá)定理所得結(jié)論可得此式子顯然成立,

所以成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是數(shù)列的前項(xiàng)和, .

(1)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng);

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)的定義域?yàn)榧螦,函數(shù)的值域?yàn)榧螧.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a﹣1},且B∩C=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)),,

(Ⅰ) 試求曲線(xiàn)在點(diǎn)處的切線(xiàn)l與曲線(xiàn)的公共點(diǎn)個(gè)數(shù);(Ⅱ) 若函數(shù)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍.

(附:當(dāng),x趨近于0時(shí), 趨向于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校在一次第二課堂活動(dòng)中,特意設(shè)置了過(guò)關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒(méi)過(guò)者沒(méi)獎(jiǎng)勵(lì),過(guò) 關(guān)者獎(jiǎng)勵(lì)件小獎(jiǎng)品(獎(jiǎng)品都一樣).下圖是小明在10次過(guò)關(guān)游戲中過(guò)關(guān)數(shù)的條形圖,以此頻率估計(jì)概率.

(Ⅰ)估計(jì)小明在1次游戲中所得獎(jiǎng)品數(shù)的期望值;

(Ⅱ)估計(jì)小明在3 次游戲中至少過(guò)兩關(guān)的平均次數(shù);

(Ⅲ)估計(jì)小明在3 次游戲中所得獎(jiǎng)品超過(guò)30件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市為了引導(dǎo)居民合理用水,居民生活用水實(shí)行二級(jí)階梯式水價(jià)計(jì)量辦法,具體如下:第一階梯,每戶(hù)居民月用水量不超過(guò)12噸,價(jià)格為4元/噸;第二階梯,每戶(hù)居民月用水量超過(guò)12噸,超過(guò)部分的價(jià)格為8元/噸.為了了解全市居民月用水量的分布情況,通過(guò)抽樣獲得了100戶(hù)居民的月用水量(單位:噸),將數(shù)據(jù)按照, ,…, 分成8組,制成了如圖1所示的頻率分布直方圖.

(圖1) (圖2)

(Ⅰ)求頻率分布直方圖中字母的值,并求該組的頻率;

(Ⅱ)通過(guò)頻率分布直方圖,估計(jì)該市居民每月的用水量的中位數(shù)的值(保留兩位小數(shù));

(Ⅲ)如圖2是該市居民張某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線(xiàn)性回歸方程是. 若張某2016年1~7月份水費(fèi)總支出為312元,試估計(jì)張某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形均為菱形, ,且.

(l)求證:

(2)求證:

(3)設(shè),求四面體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本題滿(mǎn)分10分)

已知橢圓 的左焦點(diǎn)為,右焦點(diǎn)為,離心率.過(guò)的直線(xiàn)交橢圓于、兩點(diǎn),且的周長(zhǎng)為.

1)求橢圓的方程;

2)設(shè)動(dòng)直線(xiàn)與橢圓有且只有一個(gè)公共點(diǎn),且與直線(xiàn)相交于點(diǎn).求證:以為直徑的圓恒過(guò)一定點(diǎn).并求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(1)根據(jù)頻率分布直方圖,估計(jì)這50名學(xué)生百米測(cè)試成績(jī)的中位數(shù)和平均值(精確到);

(2)若從第一、五組中隨機(jī)取出兩個(gè)成績(jī),列舉所有選取方法,并求這兩個(gè)成績(jī)的差的絕對(duì)值大于1的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案