【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)對年銷售量(單位:t)的影響.該公司對近5年的年宣傳費(fèi)和年銷售量數(shù)據(jù)進(jìn)行了研究,發(fā)現(xiàn)年宣傳費(fèi)x(萬元)和年銷售量y(單位:t)具有線性相關(guān)關(guān)系,并對數(shù)據(jù)作了初步處理,得到下面的一些統(tǒng)計(jì)量的值.

(1)根據(jù)表中數(shù)據(jù)建立年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程;

(2)已知這種產(chǎn)品的年利潤zx,y的關(guān)系為,根據(jù)(1)中的結(jié)果回答下列問題:

①當(dāng)年宣傳費(fèi)為10萬元時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?

②估算該公司應(yīng)該投入多少宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.

附:回歸方程中的斜率和截距的最小二乘估計(jì)公式分別為

參考數(shù)據(jù):.

【答案】(1) ;(2)①銷售量為,年利潤2.25;②該公司應(yīng)該投入5萬元宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.

【解析】

1)由題所給數(shù)據(jù)及參考公式,計(jì)算出回歸方程;

2)將(1)所得回歸方程代入函數(shù)式得到年利潤與年宣傳費(fèi)之間的函數(shù)關(guān)系,利用函數(shù)知識(shí)分析。

3)年利潤與年宣傳費(fèi)的比值為,求出的解析式,利用基本不等式求最值。

1)由題意,,

2)①由(1)得

當(dāng)時(shí)

即當(dāng)年宣傳費(fèi)為10萬元時(shí),年銷售量為,年利潤的預(yù)報(bào)值為。

②令年利潤與年宣傳費(fèi)的比值為

當(dāng)且僅當(dāng)時(shí)取最大值,故該公司應(yīng)該投入5萬元宣傳費(fèi),才能使得年利潤與年宣傳費(fèi)的比值最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,網(wǎng)絡(luò)電商已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的消費(fèi)方式為了更好地服務(wù)民眾,某電商在其官方APP中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對商品狀況和優(yōu)惠活動(dòng)的評(píng)價(jià)現(xiàn)從評(píng)價(jià)系統(tǒng)中隨機(jī)抽出200條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),商品狀況和優(yōu)惠活動(dòng)評(píng)價(jià)的2×2列聯(lián)表如下:

對優(yōu)惠活動(dòng)好評(píng)

對優(yōu)惠活動(dòng)不滿意

合計(jì)

對商品狀況好評(píng)

100

20

120

對商品狀況不滿意

50

30

80

合計(jì)

150

50

200

I)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與商品狀況好評(píng)之間有關(guān)系?

(Ⅱ)為了回饋用戶,公司通過APP向用戶隨機(jī)派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購物后,都可獲得一張優(yōu)惠券,且購物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結(jié)果相互獨(dú)立若某用戶一天使用了APP購物兩次,記該用戶當(dāng)天獲得的優(yōu)惠券面額之和為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù)

PK2k

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:K2,其中na+b+c+d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲乙兩班各隨機(jī)抽取10名同學(xué),如圖所示的莖葉圖記錄了這20名同學(xué)在2018年高考語文作文題目中的成績(單位:分).已知語文作文題目滿分為60分,“分?jǐn)?shù)分,為及格:分?jǐn)?shù)分,為高分”,若甲乙兩班的成績的平均分都是44分.

(1)求,的值;

(2)若分別從甲乙兩班隨機(jī)各抽取1名成績?yōu)楦叻值膶W(xué)生,求抽到的學(xué)生中,甲班學(xué)生成績高于乙班學(xué)生成績的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合,對于的一個(gè)子集,若存在不大于的正整數(shù),使得對中的任意一對元素、,都有,則稱具有性質(zhì).

1)當(dāng)時(shí),試判斷集合是否具有性質(zhì)?并說明理由;

2)當(dāng)時(shí),若集合具有性質(zhì).

①那么集合是否一定具有性質(zhì)?并說明理由;

②求集合中元素個(gè)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線經(jīng)過點(diǎn),且圓上到直線距離為的點(diǎn)恰好有個(gè),滿足條件的直線有( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知fx)=ax+kaxa0a≠1)是R上的奇函數(shù),且f1

1)求fx)的解析式;

2)若關(guān)于x的方程f1+f13mx2)=0在區(qū)間[0,1]內(nèi)只有一個(gè)解,求m取值集合;

3)是否存在正整數(shù)n,使不得式f2xn1fx)對一切x[1,1]均成立?若存在,求出所有n的值若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)的圖象向右平移個(gè)單位,在向上平移一個(gè)單位,得到g(x)的圖象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],則x1﹣2x2的最大值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)在區(qū)間上存在兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;

(Ⅱ)已知點(diǎn),若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.

查看答案和解析>>

同步練習(xí)冊答案